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Recent advancements in deep learning have shown that multimodal inference can be particularly useful in tasks like
autonomous driving, human health, and production line monitoring. However, deploying state-of-the-art multimodal models
in distributed IoT systems poses unique challenges since the sensor data from low-cost edge devices can get corrupted, lost,
or delayed before reaching the cloud. These problems are magnified in the presence of asymmetric data generation rates
from different sensor modalities, wireless network dynamics, or unpredictable sensor behavior, leading to either increased
latency or degradation in inference accuracy, which could affect the normal operation of the system with severe consequences
like human injury or car accident. In this paper, we propose PATCH, a framework of speculative inference to adapt to
these complex scenarios. PATCH serves as a plug-in module in the existing multimodal models, and it enables speculative
inference of these off-the-shelf deep learning models. PATCH consists of 1) a Masked-AutoEncoder-based cross-modality
imputation module to impute missing data using partially-available sensor data, 2) a lightweight feature pair ranking module
that effectively limits the searching space for the optimal imputation configuration with low computation overhead, and 3) a
data alignment module that aligns multimodal heterogeneous data streams without using accurate timestamp or external
synchronization mechanisms. We implement PATCH in nine popular multimodal models using five public datasets and one
self-collected dataset. The experimental results show that PATCH achieves up to 13% mean accuracy improvement over the
state-of-art method while only using 10% of training data and reducing the training overhead by 73% compared to the original
cost of retraining the model.

CCS Concepts: • Computing methodologies → Multi-task learning; • Computer systems organization → Cloud
computing; • Human-centered computing→ Ubiquitous and mobile computing systems and tools.
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1 INTRODUCTION
Recent years have seen substantial interest in deploying deep neural networks on Internet of Things (IoT) systems
that combine data from a large number of distributed sensors and analyze them to derive actionable insights [62].
The emerging of IoT-cloud systems using multimodal inference brings great opportunities to significantly improve
inference accuracy and robustness under complex scenarios, such as extreme weather conditions and no line of
sight [15, 72] and greatly overcome the limitation of single-modality in the complex scenarios. These systems
has shown significant potential in healthcare [38], activity recognition [61, 71], event detection [66, 70], and
autonomous driving [14].
Real-world multimodal systems always require accurate predictions in a timely manner. Most of the popular

multimodal models are trained andmake their predictions based on intact well-constructed data. However, the data
collected by the multimodal systems may become corrupted due to various factors, such as fluctuations in network
bandwidth, power failures, abnormal sensor statuses, and noisy environments. Some of these factors introduce
noise to the collected data, which is difficult to be discerned the true signal. Other factors, like fluctuations in
network bandwidth, can result in partial or complete loss of data or transmission delay between the sensor and
the server. Therefore, we use the term "corrupted data" or "data corruption" to refer to the data affected by (1)
noise, (2) partial or complete loss, and (3) transmission delay between the sensor and server, and encompass all of
the most common phenomena in this paper. For example, in cellular networks using LTE, the average throughput
can fluctuate from 3 Mbps to 300 Kbps within one second, causing a nine-second delay when transferring a 3 Mb
audio file [36]. In addition, existing wireless sensor networks may have thousands of sensor nodes with limited
battery capabilities. When the battery level is below a certain level (e.g., 70% [19]), the reliability of the wireless
sensors drops to 0.57, causing significant sensor failure and data loss. On the other hand, real-time and accurate
predictions are crucial for real-world multimodal systems. For an autonomous driving car at 40 km per hour in
an urban area, the desired response time of the system must be less than 90ms [52] to have timely feedback and
avoid severe consequences.

Prior efforts have been exploring the problem of model partition [50] and model compression [7] to deal with
this issue. However, there has been less work on the corrupted heterogeneous data imputation challenge to
reduce the multimodal system latency while maintaining the system’s accuracy. Recent work also demonstrated
the capability of speculative inference to adapt to asymmetries data generation rates across modalities and other
abnormal sensor behaviors [51]. However, three fundamental limitations still remain. First, the existing method
only works for the specified type of multimodal model (late-fusion[23]) since it leverages fixed feature pairs to
perform the data imputation for the missing/corrupted part of the data, which limits the system’s compatibility
and usability and degrades its performance. Second, the system is not compatible with heterogeneous input
features. It requires substantial feature engineering efforts to construct a symmetric feature structure and make
a hard-coding feature selection. These two vulnerabilities lead to significant performance drops ( up to 13% in
our experiments). Meanwhile, the training overhead is high in complex multimodal models (20 times more than
our method.) Finally, the data alignment in the system is not an individual section. It depends heavily on the
model of data imputation, which not only increase the computing load but also bring more unstable factor to the
alignment result.
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Fig. 1. Application scenarios of PATCH in real-time multimodal systems.

The focus of this paper is to overcome the above limitations and unleash the practical potential of non-
blocking inference in existing distributed multimodal systems. To this end, we propose PATCH, the first inference
framework that can be plugged into various existing multimodel to enable non-blocking inference under complex
and noisy environments.

Figure 1 illustrates three application scenarios of PATCH in Human Activity Recognition (HAR), Autonomous
Driving, and Event Parsing. In the case of HAR, a mobile phone sensor and a smartwatch sensor collect data
about a person’s activities and behaviors for health monitoring. In the case of Autonomous Driving, a radar and
a camera gather information about the road and surroundings for collision avoidance. Event Parsing involves the
collaborative use of a camera and a microphone to gather information pertaining to security events. However,
due to heterogeneous data sizes and fluctuations in sensor states, the server may receive partial or corrupted
data from individual IoT devices. When corrupted data reaches the server, PATCH first aligns the heterogeneous
data from various sensor modalities and uses the correlated features to impute the missing information. The
imputed feature will be fed into the original multimodal model to generate the final prediction. Then, the server
can deliver accurate and timely alerts, guidance, and incidents to hospitals, autonomous vehicles, and police
departments, respectively.

Besides the above application scenarios, PATCH can benefit a variety of existing multimodal models to adapt
to abnormal sensor behaviors and unpredictable network dynamics. First, unlike existing machine learning
solutions which require retraining the entire original multimodal model to address the issue, the data imputation
model of PATCH can be trained as a plug-in module, significantly reducing the training overhead and preventing
potential privacy leakage risk [3]. Second, PATCH works for all fusion strategies, including early fusion [23, 56],
model-level fusion [43], and late fusion[23], making it compatible with various existing multimodal models
and sensor modalities. Third, the overall framework of PATCH is a lightweight module compared to the prior
work [51]. It decreases the computation cost to one-twentieth and increases the system performance by 13%,
dramatically expanding PATCH application scenarios.

To realize PATCH in practice, we face three main challenges. First, it is challenging to design a cross-modality
imputation algorithm that is broadly applicable across various fusion strategies (e.g., early, middle, and late fusion)
and heterogeneous data streams with different sources, dimensionalities, windows sizes, and noise. Second, due
to the variety of existing multi-modal models, the number of feature imputation configurations, which denote
the combination of potential base input features and target imputation features, can be enormous in existing
multi-modal models (e.g., up to 500 configurations [13, 20, 59, 66]), introducing significant training overhead
and requiring a large amount of training data. Finally, due to computation and network limitations, sensor data
from IoT devices may not be well-synchronized in the cloud. And external synchronization mechanisms are not
always available due to noisy environments or sensor malfunction.
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(a) Early fusion (b) Model-level fusion (c) Late fusion

Fig. 2. Three multi-modal fusion strategies based on deep networks: early fusion, model-level fusion, and late fusion.

We designed three key components to address the above challenges. First, we propose a cross-modality
imputation technique to predict the partial, corrupted, and heterogeneous sensor data across various modalities
by leveraging Feature-level Masked AutoEncoder. We then design a lightweight feature ranking module to select
the optimal data imputation configuration, which significantly limits the feature searching space and decreases
the computation load of the searching process. Finally, we design a Transformer-based data alignment module
with low computation overhead.

Our main contributions are as follows:
• We present PATCH, a generic plug-in framework composed of three modules: cross-modality feature
imputation module via feature-level masked autoEncoder (FMAE), feature ranking module, and data
alignment module. This framework is designed to facilitate non-blocking multimodal inference under
challenging situations, including uneven data generation rates across modalities, noisy/missing/delayed
sensor data, fluctuating wireless networks, and complex fusion models. Furthermore, these components
significantly enhance the computational efficiency and robustness of PATCH.

• To demonstrate the compatibility and generality of PATCH, we evaluate the system under all fusion
strategies using nine off-the-shelf multimodal models and five public datasets. We also evaluate PATCH
in four real-world cases, including battery level variation, cellular network fluctuation, one end-to-end
human activity recognition task based on a self-collected dataset, and one end-to-end event parsing task.

• Experimental results show that PATCH achieves up to 13% mean accuracy improvement and average 64%
inference latency reduction against the state-of-the-art method [51] while only using 27.4% of the training
time compared to the original cost of retraining the model. This has the potential to improve the existing
system with minimal energy cost and privacy leakage risk.

2 BACKGROUND
In this section, we introduce the background of fusion strategies of multimodal systems and feature imputation.

2.1 Fusion Strategies of Multimodal System
A multimodal system is a system that integrates information from two or more different sources to overcome
the limitations of a single signal modality and enhance its recognition precision. Figure 2 shows the three main
strategies (early fusion, model-level fusion, and late fusion) in existing multimodal systems [23, 43, 47, 88].

2.1.1 Early Fusion. Early fusion is a conventional method of integrating features extracted from multiple data
sources before they are processed by the neural network. The fusion layer is always positioned at the start of
the neural network. For this strategy to be effective, it is necessary to have a strong alignment between various
modalities so that the correlations can be captured at a high level [23, 56].
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2.1.2 Model-level fusion. Model-level fusion, also known as intermediate fusion, allows the system to learn a
joint representation of all modalities by merging their individual representations into a single hidden layer [43].
This fusion layer is located at a middle depth within the neural network, providing the multimodal system with a
more versatile fusion stage.

2.1.3 Late Fusion. Late fusion can effectively handle heterogeneous data and minimize independent errors from
different sensor modalities. In multimodal systems using the late fusion strategy, features extracted from raw
data are processed separately within the neural network [23]. The fusion layer is located at the final stage, just
before making predictions.

2.2 Feature Imputation
To mitigate the impact of delayed or corrupted data and lower the latency of multimodal systems, we utilize
intermediate features from existing models for data imputation. A feature pair in this process consists of one
input feature (either clean or damaged) and a corrupted target feature. The aim of feature imputation is to create
a new feature from the input feature, which then replaces the corrupted target feature in the original neural
network, resulting in improved system performance. There are three commonly used data imputation methods
in the machine learning domain.

2.2.1 Generative Adversarial Network. The Generative Adversarial Network (GAN) [6, 17, 34, 35, 39, 57, 81, 89, 94]
is a deep convolutional neural network that is trained using adversarial methods for image-to-image translation.
Its goal is to map between the input domain and target domain using unaligned image pairs. The work presented
in MobiSys21 [51] uses the CycleGAN approach [94] and provides a novel solution for low-latency, distributed
multimodal systems. However, the CycleGAN is designed for image-to-image tasks, and is not well-suited for
imputing heterogeneous multimodal data. The rigid data structure and fixed position of corrupted intermediate
features are the main limitations of [51].

2.2.2 Variational Autoencoder. Variational Autoencoders (VAEs) [4, 18, 26, 33, 40, 85]consist of an encoder, a
decoder, and a loss function. The encoder transforms the input data into a latent space through a convolutional
or linear network. Instead of forwarding the latent values directly to the decoder, VAEs calculate a mean and
standard deviation to regularize the input to the decoder and produce a latent space with desirable properties.
Our baseline method involves combining the VAE [45] and GAN [94] approaches to establish a strong baseline
result. The results of the experiment showed that the Variational Autoencoder (VAE) method is not suitable for
inputs with short durations, which are commonly seen in multimodal systems for applications like autonomous
driving and human activity recognition.

2.2.3 Masked Autoencoder. The masked autoencoder (MAE) is a cutting-edge method for self-supervised com-
puter vision tasks [31]. The MAE [31] model masks randomly selected patches of the input image before it is
fed into the encoder transformer. By incorporating an extra mask function, the model is able to reconstruct
the desired feature with increased precision efficiently. Our Feature-level Masked Autoencoder (FMAE) method
leverages this concept by allowing for the choice of either a clean or corrupted input feature as the input. By
dividing the input feature into several patches, the FMAE method can perform a more detailed simulation for
short-duration target features, such as features from autonomous driving or human activity recognition.

3 SYSTEM DESIGN
We introduce PATCH, a generic framework of non-blocking inference for multimodal learning. The system takes
data from corrupted or noisy data streams as the inputs, imputes intermediate features, and proactively computes
final predictions within the original multimodal models. Compared with the state-of-the-art approach [51],
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Fig. 3. Overview of PATCH. Three key modules (Data Alignment, Feature Pair Ranking, FMAE) and the workflow.

our system provides more compatibility and flexibility to various multimodal models and reduces computation
overhead while maintaining good accuracy.

Figure 3 illustrates the overview of PATCH, containing a plug-in cross-modality feature imputation module, a
lightweight feature pair ranking module, and a data alignment module. Given a pair of corrupted unsynchronized
data 𝑥 (i.e. sound modality) and 𝑦𝑐 (i.e. image modality), these corrupted input data initially be aligned by our
data alignment module. Then, the aligned data 𝑥 and 𝑦𝑎 are sent to the original multimodal system to extract the
intermediate features 𝑓𝑥 and 𝑓𝑦𝑎 . Feature Pair Ranking module exhausts all possible imputation configurations
inside the existing multimodal system and searches for the optimal feature pair configuration with minimum noise
and maximum mutual information. The optimal configuration is applied to the Feature Masked AutoEncoder
(FMAE) module to impute target latent features 𝑓𝑦𝑎′ from 𝑓𝑥 and 𝑓𝑦𝑎 . Finally, the reconstructed feature 𝑓𝑦𝑎′ and
feature 𝑓𝑥 are sent back to the original multimodal model and generate the speculative inference.

3.1 Cross-modality Feature Imputation Using Feature Masked AutoEncoders
The cross-modality feature imputation serves as a plug-in module in the original multimodal model to impute any
missing, corrupted, or delayed data. Existing methods mainly focus on generating raw modality data from other
modality data using Generative Adversarial Networks (GAN) [6, 17, 34, 35, 39, 57, 81, 94] or Autoencoders [4, 18,
26, 33, 40, 85]. However, the synthesized sensor data often lose significant details and limit the system performance
of the original model due to inherent differences between the raw sensor data and their noise sources. Rather
than imputing the raw sensor data, we propose to impute intermediate features within the original multimodal
models. Specifically, we design a Feature Masked AutoEncoder (FMAE) to impute the corrupted sensor data on
the feature level. FMAE deliberately masks the intermediate feature with random patches and then attempts to
reconstruct its missing/masked data with a Vision Transformer (ViT) structure from unmasked patches. It can
force ViT to directly learn the latent structure from massive amounts of sensor data with this training technique
while using a small amount of computing and memory. Utilizing the mask function can boost the accuracy and
efficiency of our model when reconstructing the desired feature. It can swiftly substitute the masked clean data
with the structure of the target feature and expedite the computing process for the masked corrupted data by
promptly refilling it. Unlike the traditional Masked AutoEncoders[31] that can only learn the data structure by
reconstructing from raw sensor data, our FMAE can recover cross-modality latent features inside the original
multimodal model. Our FMAE also differs from the original MAE in the patch-dividing strategy. Unlike MAE
partition image data into several patches, FMAE handles latent features 𝑓 𝑁𝑥1𝑥𝐿 ∈ 𝑅𝑁𝑥𝐶𝑥𝐿 and treats each channel
in 𝐶 as a patch.
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Fig. 4. An overview of cross-modality feature imputation. (a) Feature Masked AutoEncoder (FMAE) includes an asymmetric
encode-decode architecture, where the encoder takes in only the visible patches, and the decoder reconstructs the target
feature. (b) Existing multimodel models with FMAE as a plug-in module, where FMAE leverages the optimal feature pair
configuration to impute missing features within the original models.

Figure 4 illustrate the overview of FMAE, which leverages input features 𝑌 to impute target features 𝑃 . In
the training phase, 𝑌 is split into 𝑛 patches and masked by a function using a high mask ratio (0.75 in our
implementation). Then the remaining features 𝐹𝑝𝑎𝑟𝑡𝑖𝑎𝑙 are sent to the encoder part. For encoding, PATCH
leverages Vision Transformer (ViT) [21] as the encoder 𝑔𝑒𝑛𝑐𝑜𝑑𝑒𝑟 to embed the unmasked patches 𝐹𝑝𝑎𝑟𝑡𝑖𝑎𝑙 into
latent representation 𝐹𝑒𝑛𝑐𝑜𝑑𝑒𝑟 , which can be derived in Eq.1.

𝐹𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = 𝑔𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝐹𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ) (1)

For decoding, both the latent representation 𝐹𝑒𝑛𝑐𝑜𝑑𝑒𝑟 and masked feature patches 𝐹𝑚𝑎𝑠𝑘are applied to the
decoder 𝑔𝑑𝑒𝑐𝑜𝑑𝑒𝑟 with a positional embedding ℎ to maintain the organized structure of imputed feature 𝐹𝑖𝑚𝑝𝑢𝑡𝑒𝑑 ,
which can be derived in Eq.2.

𝐹𝑖𝑚𝑝𝑢𝑡𝑒𝑑 = ℎ(𝑔𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (𝐹𝑒𝑛𝑐𝑜𝑑𝑒𝑟 + 𝐹𝑚𝑎𝑠𝑘 )) (2)
Finally, we compute the loss L∈ in Eq. 3 using all of the target feature 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑖) and the reconstructed imputed
feature 𝑓𝑖𝑚𝑝𝑢𝑡𝑒𝑑 (𝑖). Both masked and unmasked patches of features are included for the imputed feature.

L =
1
𝑛

∑︁
𝑖∈𝑛

|F𝑖𝑚𝑝𝑢𝑡𝑒𝑑 (𝑖) − F𝑡𝑎𝑟𝑔𝑒𝑡 (𝑖) |2 (3)
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Fig. 5. Overview of Feature Pair Ranking Algorithm. PATCH leverages the top-K most correlated intermediate feature pair to
filter out irrelevant imputation configurations.

Figure 4(b) illustrates how FMAE serves as plug-in modules in off-the-shelf multimodal models. Specifically,
various intermediate feature pairs within the existing model are sent to the feature imputation modules 𝐹𝑀𝐴𝐸𝑖 .
After imputing features using FMAE, the imputed feature 𝐹𝑖𝑚𝑝𝑢𝑡𝑒𝑑 is transmitted back to the original multimodel
model and generates the non-blocking inference.

To further improve the robustness of the feature imputation module, we utilize the Multi-Task Learning(MTL)
method and leverage the hard parameter-sharing approach in the training phase. MTL involves training a model
to perform multiple tasks simultaneously, while hard parameter sharing allows the intermediate feature of the
existing multimodal model to acquire information from both the FMAE module and the final prediction. We
consider the FMAE functions that recover the corrupted features as an auxiliary task to the main task of the
original model in MTL, and merge the FMAE loss function with the original model’s loss function. MTL not only
enhances the robustness of the feature imputation module but also lowers the risk of overfitting. Our experiments
in Sec. 4.7 show that MTL works well in all existing multimodal models, improving an average of 8.5% accuracy
compared to the single FMAE module.

3.2 Feature Ranking Using the Top-K Most Correlated Feature Pairs
This module aims to search for the optimal feature pair that produces the best cross-modality feature imputation
performance in the imputation configuration. Existing multi-modal models often involve complex learning
models like Alex-Net and VGG-Net [13, 20, 46, 59, 64, 66]. For example, when the multimodal system comprises
20 intermediate features spanning two modalities, the number of possible data imputation configurations for
these deep learning models can exceed 380. Therefore, the computation overhead can be significant if we use the
naive brutal-force method to rank all imputation configurations. In this paper, we design a lightweight feature
ranking algorithm to effectively search for the optimal imputation configuration (pair of the input and the target
features) with minimum computation overhead.
During the feature imputation experiments, we observe that when a pair of intermediate features are highly

correlated, the imputed features always provide significant cross-modality information and thus improve the inference
accuracy of the original multimodal model. Inspired by this observation, PATCH ranks intermediate feature pairs
by their correlation and then filters out less-correlated feature pairs.
Figure 5 shows the overview of the feature pair ranking algorithm. Specifically, the intermediate features

𝑃1, 𝑍1... from the existing model are randomly selected and normalized to minimize the impact of the absolute
value divergence between different modalities. However, the vast size of the intermediate feature introduces
significant overhead on computing feature correlations. We leverage Principal Component Analysis (PCA) to
reduce the dimensionality of all normalized intermediate features linearly. Eq. 4 derives the intermediate features
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Fig. 6. Overview of Data Alignment Module. The module leverages the inherent similarity between sensor modalities to
align multi-modal data streams.

𝑓
′(𝐶𝑥𝐿2 )
𝑖

after applying PCA.
𝑓
′(𝐶𝑥𝐿2 )
𝑖

= 𝜙𝑝𝑐𝑎 (𝑓 (𝐶𝑥𝐿)𝑖
) (𝐿2 ≤ 𝐶 < 𝐿) (4)

where 𝜙𝑝𝑐𝑎 () is the PCA function, 𝐿 is the original dimensionality, and 𝐿2 is the reduced dimensionality.
After dimension reduction, PATCH ranks the feature pair configuration by computing the Dynamic Time

Warping (DTW) distance among all feature pairs 𝑌2𝑋1, 𝑍1𝑌2, · · · . Specifically,𝑤1,𝑤2,..𝑤𝐿2 make up the warp route
𝑊 between feature 𝑓 ′1 and feature 𝑓 ′2 , where𝑤𝑚 is the𝑚𝑡ℎ element of the warp path. The warping path starts at
𝑤1 = (1, 1) and finishes at𝑤𝐿2 = (𝐿2, 𝐿2). The path must traverse every component of the two input features. Then,
PATCH can filter out less-correlated feature configurations based on DTW distance 𝐷𝑖𝑠𝑡 (𝑓 ′1 , 𝑓 ′2 ), derived in Eq. 5.

𝐷𝑖𝑠𝑡 (𝑓 ′1 , 𝑓 ′2 ) =
𝑘=𝐿2∑︁
𝑘=1

𝐷𝑖𝑠𝑡 (𝑓 ′1 [𝑘, 𝑖], 𝑓 ′2 [𝑘, 𝑗]) (5)

Using the most correlated feature pair as the optimal imputation configuration risks incorrectly eliminating
the true optimal imputation configuration. For example, intermediate features from the same modality also have
strong correlations with each other, but the imputed features will not generate any meaningful cross-modality
information to improve the accuracy of the original multimodal model. Based on this observation, we hypothesize
that while the most correlated feature pair and the optimal imputation configuration often do not match, the
optimal imputation configuration is highly likely to fall within the top-K (𝐾 = 20% in our experiments) most
correlated feature pairs. Therefore, PATCH searches for the optimal imputation configuration using FMAE within
the top-K most correlated feature pairs instead of just the top result.

3.3 Data Alignment Using Transformer
The aim of this module is to synchronize the data streams of multiple modalities before feature imputation, all
while avoiding dependence on external synchronization mechanisms, as these mechanisms may prove unreliable
or inaccessible in complex environments. The key idea is to leverage the inherent similarity between sensor
modalities to align multi-modal data streams.

Specifically, PATCH leverages full sensor data from one modality as the reference and then uses the corrupted
partial sensor data from other modalities to impute the full sensor data. We have observed that heavy modalities
with high data stream requirements or energy consumption are more susceptible to severe data missing or
corruption. Therefore, we can select the lightweight modality as the reference modality for the data alignment
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Fig. 7. An example of data alignment. The blue circle indicates the minimum L2 distance between the reference and the
imputed sensor data.

module. To make our data alignment module broadly applicable to various sensor modalities, we design a
Transformer-based algorithm to take advantage of one modality’s clean sensor data.

Figure 6 shows the overview of the data alignment module as well as the Transformer model. The Transformer
is a multi-head self-attention module that projects the input into three different matrices: query matrix Q, key
matrix K, and value matrix V. The first step of the model is to perform the convolution and liner projection
operation to the matrix K and V to compress memory space and obtain the query matrix Q by the line projection
in the left side. After the reshaping process, the module computes the attention function on matrix Q, K, and V.
The output values of each head are concatenated together, and the model performs the linear projection to the
concatenated feature to generate the final output.

In the training phase, we train the Transformers Γ𝑖 (i =1,2...N) under various delay configurations and get the
reference features 𝑋𝑓 = Γ𝑏𝑎𝑠𝑒 (𝑓 ) from well-aligned raw sensor data. In the testing phase, PATCH leverages these
𝑁 Transformers to generate 𝑁 transformed sensor data 𝑌𝑡𝑐1′, 𝑌𝑡𝑐2′ · · ·𝑌𝑡𝑐𝑁 ′. Then, we align the multimodal data
streams by computing the minimal 𝐿2 distance between the reference sensor data and the imputed sensor data.
Eq. 6 shows the objective function of the data alignment module

𝐷𝑚𝑖𝑛 =
𝑁

argmin
𝑖=1

|Γ𝑖 (Y′
𝑐 ) − Γ𝑏𝑎𝑠𝑒 (𝑓 ′) |2 =

𝑁

argmin
𝑖=1

|Y𝑡𝑐𝑖
′ − 𝑋 ′

𝑓
|2 (6)

where 𝐷𝑚𝑖𝑛 is minimum distance between our referral feature 𝑋 ′
𝑓
and the transformed corrupted data Y𝑡𝑐𝑖

′.
Figure 7 shows an example of the data alignment. The aligned data streams match the actual delay only if the

𝐿2 distance is the minimum. The misaligned data streams will introduce noise to the corresponding Transformer,
increasing the 𝐿2 distance between the imputed sensor data and the reference. Unlike the prior efforts that rely
on the structure of the multimodal model to align sensor data [51], PATCH does not assume the dimensionality
of the sensor input and the structure of the multimodal model are identical. Thus, PATCH is broadly applicable to
complex multimodal models and can align both structural and non-structural sensor data. Moreover, our data
alignment module utilizes the raw data as the input for alignment to the Transformer, which prevents the buildup
of errors from the decreased performance of the feature imputation module. This results in improved accuracy
and efficiency.
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Table 1. Experimental settings: we evaluate PATCH under four fusion strategies using nine off-the-shelf multimodal models
and five public datasets.

Model Name Dataset Fusion Strategies Applications # of Feature Pairs # of Modalities Evaluation Metric (Ori.) Modality Types

AVE [66] AVE [66] Late Fusion Event Localization 30+ 2 Accuracy Audio + Video
CMRAN [76] AVE [66] Model-Level Fusion Event Localization 50+ 2 Accuracy Audio + Video
PSP [93] AVE [66] Model-Level Fusion Event Localization 50+ 2 Accuracy Audio + Video
AVVP [65] LLP [65] Late Fusion Event parsing 50+ 3 F1 score Audio + Video(2D+3D)

MAAVVP [75] LLP [65] Late Fusion Event parsing 50+ 3 F1 score Audio + Video(2D+3D)
DAN [24] UCI OPPORTUNITY [10] Early Fusion Human Activity Recognition 30+ 3 Accuracy IMU Sensors
DDNN [61] UCI HAR [2] Early Fusion Human Activity Recognition 20+ 3 Accuracy IMU Sensors
S-HAR Self-collected Early Fusion Human Activity Recognition 30+ 3 Accuracy IMU Sensors

Transfuser1 [60] CARLA [22] Late Fusion Autonomous Driving 30+ 2 Loss Point Image + Lidar
Transfuser2 [60] CARLA [22] Model-level Fusion Autonomous Driving 30+ 2 Loss Point Image + Lidar

4 SYSTEM EVALUATION
In this section, we describe the experimental settings, datasets, and multimodal models we use, followed by a
comprehensive evaluation.

4.1 Experimental Settings
4.1.1 Implementation. We implement PATCH on a server utilizing two Nvidia Tesla V100S with 32 GB RAM,
an Nvidia Tesla K80 GPU with 16GB RAM, and an Intel(R) Xeon(R) Platinum 8260 CPU 2.40GHz as our main
experimental platform. We also evaluate the performance baseline methods on the same device.

4.1.2 Baselines. We compare PATCH with four baselines. The first baseline is naive blocking, in which the cloud
will ask the client to re-transmit the partial sensor data. The inference pipeline will be completely blocked until
full sensor data is available in the cloud. The second, on the hand, is naive non-blocking, in which the cloud
will leverage the partial-available sensor data to force the inference model to generate an output. The third
baseline is retraining the multi-modal models themselves with varying amounts of data corruption ratio. The
number of retrained models is equal to the number of data corruption configurations. During the test phase,
it will measure the data corruption ratio and select a retrained model that leverages the partial data to get
the outputs without blocking the inference pipeline. Finally, the most advanced technique currently available
(MobiSys21 [51]), referred to as the fourth baseline, uses CycleGan and Variational Autoencoder (VAE) to imputed
the delayed sensor data, allowing for inference without blocking.

4.1.3 Unified Evaluation Metric. In the evaluation, we aim to standardize the evaluation metric for the prediction
results to facilitate consistent comparison across different multimodal models. Therefore, we define the accuracy
loss as the evaluation metric, which is the accuracy difference between the original models (i.e., gold standard)
without any data corruption and models with different data corruption ratios. A smaller accuracy loss indicates
better system performance. We then define performance improvement as the normalized difference between the
performance of PATCH and that of the baselines.

We conducted experiments with various types of data corruption, varying in percentage and distribution forms,
to determine the variable that caused the most significant accuracy loss. For instance, in datasets containing
input from both time and spatial domains (e.g., AVE) we found that a 50% corruption rate in the time domain had
a more significant impact on system accuracy than 30% corruption rates in both the time and spatial domains
separately (50% in total). Therefore, we chose data corruption in the time domain as the primary variable for
AVE, LLP, and all HAR models. We selected spatial domain corruption as the primary variable for the CARLA
dataset, which contains image and Lidar data. Moreover, we opted for the continuous distribution of partial data
loss as the primary form of data corruption, as it produces more severe damage to the data and prediction results
compared to a uniform distribution.
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4.2 Multimodal Models and Datasets
Table 1 summarizes the off-the-shelf multimodal models and datasets we used in the evaluation. Specially, we
implement both PATCH and the baseline methods in nine off-the-shelf multimodal models and evaluate the
performance using five public datasets and one self-collected Human Activity Recognition(s-HAR) dataset. These
multimodal models cover a variety of application scenarios (Event location, Event parsing, Activity Recognition,
and Autonomous driving) and fusion strategies (Early fusion, Model-level fusion, and Late fusion) with numerous
intermediate features (20+ to 50+) extracted from different sensor modalities (audio, video, IMU, LIDAR).

4.2.1 Dataset. The Event Detection Dataset (AVE)[66] contains over 4,000 10-second videos covering 28 audio-
visual events. The Event Parsing Dataset(LLP)[65] contains 11849 YouTube video clips covering 25 event categories.
The UCI HAR[2] dataset is recorded by 30 volunteers with a smartphone on their waist to record the information
of the accelerometer and gyroscope in six types of activities. UCI Opportunity dataset [10] are collected from 4
volunteers from multiple body-worn sensors. The Autonomous Driving Dataset uses the same setting with [60]
CARLA 0.9.10 data simulator for training and testing. It consists of 8 publicly available towns with around 2500
routes and 14 kinds of weather data.

4.2.2 Models. As shown in Table 1, the AVE [66], CMRAN [76], and PSP [93] models concentrate on the task of
Audio-Visual Event Localization with two modalities and are trained on the AVE [66] dataset. The AVE model
is a late fusion model, while the other two models are model-level fusion models. Each of these three models
contains more than 30 available intermediate feature pairs that might be beneficial from the feature ranking
and imputation step of PATCH. AVVP [65] and MAAVVP [75] models are trained on the LLP[65] dataset to
explore more detailed event information from input sources with three modalities. Their multimodal models have
three different kinds of features: audio features, 2D frame-level features, and 3D snippet-level features. More
than 50 intermediate features and a complex model structure can be extracted from these two models. Both the
DAN [24] and DDNN [61] models are early fusion models with three modalities. Before processing in the neural
network, incoming data from various sources is fused at an early stage. The majority of these modality data are
gathered by IMU sensors or mobile IoT devices. The Transfuser [60] model contains two individual multimodal
model structures with different processing procedures and fusion strategies that contribute to the original system
performance. Implementing PATCH with these off-the-shelf multimodal models can explore the affection of
fusion type under the same model settings.

4.3 Overall Performance
We start with the end-to-end improvement of PATCH against the three baselines. To simulate the impact of
missing, corrupted, and delayed sensor data in a complex environment, we randomly drop 0-90% of the sensor
data in both time and spatial domains. For example, to drop 50% of sensor data, we first drop 30% of available
frames and then drop 30% of available blocks within the not dropped frames. Blocks represent the smallest unit
of dimensionality in the spatial domain for each input feature. This strategy can simulate data loss during data
generation and transmission when the sensor data (i.e., images) are compressed using compression techniques
like H.264 or H.265 Codec. For the baselines using original models (blocking or non-blocking), we assume the
data streams are perfectly aligned since they need to rely on external synchronization mechanisms to align data
streams. For PATCH and MobiSys21, we introduce misaligned data streams and leverage their data alignment
modules to align sensor data prior to the data imputation module. Figure 8 summarizes the overall performance
of PATCH as well as the three baselines.

4.3.1 PATCH vs. Original Models (Non-blocking). As shown in Figure 8, PATCH outperforms the original models
with non-blocking strategy by 18.7% on the average improvement of accuracy loss, showing that PATCH is
capable of dealing with missing, corrupted, or delayed sensor data in complex multimodal models. When more

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 130. Publication date: September 2023.



PATCH: A Plug-in Framework of Non-blocking Inference for Distributed Multimodal System • 130:13

0% 20% 40% 60% 80% 100%
Percentage of Corrupted Data

0

0.15

0.3

0.45

0.6

A
cc

u
ra

cy
 L

os
s

AVE

Original(Non-Blocking)
Mobisys21(VAE)
Ori(Retrain)
PATCH
Ori(Blocking)

(a) Model 1: AVE

0% 20% 40% 60% 80% 100%
Percentage of Corrupted Data

-0.1

0.05

0.2

0.35

0.5

A
cc

u
ra

cy
 L

os
s

CMRAN

Original(Non-Blocking)
Mobisys21(VAE)
Ori(Retrain)
PATCH
Ori(Blocking)

(b) Model 2: CMRAN
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(c) Model 3: PSP

0% 20% 40% 60% 80% 100%
Percentage of Corrupted Data

-0.05

0.05

0.15

0.25

0.35

A
cc

u
ra

cy
 L

os
s

AVVP

Original(Non-Blocking)
Mobisys21(VAE)
Ori(Retrain)
PATCH
Ori(Blocking)

(d) Model 4: AVVP.
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(e) Model 5: MAAVVP
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(g) Model 7: DDNN
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Fig. 8. Overall performance: End-to-end accuracy improvement between PATCH and the three baselines. In this experiment,
we randomly mask the sensor data in both time and spatial domains.

sensor data are masked, the gain of PATCH over the original models (non-blocking) becomes larger. We observe
that the complexity of the multimodal model also affects the gain of PATCH. For example, CMRAN contains
more than six inference layers, including two fusion layers. In this case, PATCH outperforms the original models
(non-blocking) by 40% since the masked sensor data significantly degrades the accuracy of the original multimodal
model.

4.3.2 PATCH vs. Original Models (Blocking). To maintain high inference accuracy, the original models may
impede the inference pipeline and request IoT devices to resend sensor data. However, this approach significantly
increases the end-to-end inference latency, which may be unacceptable in many real-time systems. For instance,
autonomous driving applications typically demand an end-to-end latency of less than 25 ms [11]. Therefore, the
extra latency caused by retransmit the data (e.g., 50 ms) is not tolerable and may lead to severe accidents in the
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real world. Our observations indicate that when the data corruption ratio is below 50%, PATCH can achieve
similar level inference accuracy to that of the original models that block the inference pipeline. In addition,
the inference latency of PATCH is only 11% of the original models that block the pipeline, as shown in Fig 12.
These findings demonstrate that PATCH can enable non-blocking inference without compromising the inference
performance if the data corruption ratio is small.

4.3.3 PATCH vs. Original Models (Retrain). We observe that PATCH outperforms the retrained models in five
models (AVE, PSP, MAVVP, T-Late, and T-Geo) with an average accuracy improvement of 2%, while it matches the
performance of four other models (CMRAN, AVVP, DAN, DDNN) with a negligible difference. This performance
was assessed across a range of data corruption ratios from 0% to 90%. In scenarios with a low data corruption ratio
(less than 35%), our method significantly improved the average accuracy loss across nine models by 2.9%, compared
to the results obtained from retraining models. However, in situations of high data corruption (greater than 65%),
the retrained models exhibited superior performance. Overall, the average accuracy loss improvement is 0.3%
against the retrained models. Additionally, as demonstrated in Fig. 11(b), PATCH significantly reduces the training
overhead. On average, PATCH reduces the training overhead by 73% compared to retraining methods. This
marked reduction in training time, coupled with the improvement in accuracy loss, underscores the superiority
of our PATCH method over the conventional approach of retraining models.

4.3.4 PATCH vs.MobiSys21. The result in Fig. 8, shows that PATCHoutperforms the state-of-the-art (MobiSys21[51])
by up to 13% mean accuracy loss improvement , meanwhile the inference latency of PATCH is only 36% of
the MobiSys21 system. MobiSys21 leverages a hard-coded feature pair to impute intermediate features. Thus,
the gain of PATCH will be significant if the hard-coded feature pair is not optimal for cross-modality data
imputation. For the early-fusion multimodal models (e.g., Model 6: DAN and Model: DDNN), the hard-coded
feature pair is not even within the top-20% best candidates, which significantly degrades the performance. Unlike
MobiSys21, PATCH searches for the optimal feature pair that provides the most cross-modality information to
the original multimodal model, which guarantees to generate optimal inference results in all models. Besides,
the data imputation in MobiSys21 is based on Pix2Pix GAN [39] and Variational Autoencoder(VAE), which is
designed to train a deep convolutional neural network for image-to-image reconstruction. Compared with the
GAN and VAE, FMAE in PATCH is more generic and robust in reconstructing non-image data like audio or IMU
data. Besides, the data alignment error of PATCH is only one-fourth of MobiSys21, improving system robustness
in the case of long delays (more than 50% data drop) or complex multimodal models (30+ intermediate features).
The alignment module in PATCH is an independent section that takes the raw sensor data as the referral base.
However, the alignment method of MobSys21 strongly relies on the cross-modality imputation module, which
degrades the system performance when the imputation module accumulates the inference error.
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4.4 Impact of Data Alignment
We now look at the impact of our data alignment module. In this experiment, we randomly set the ratio of data
corruption uniformly distributed in the 0–90% range to the collected sensor data in the five datasets. Figure 9(a)
shows the mean data alignment error in the second covering 90% confidence interval. Overall, the mean data
alignment error is 0.09–0.27 seconds for these five datasets. Since we search for the minimal L2 distance between
the imputed data and the reference, the minimum data alignment resolution is one frame (e.g., 0.1 s for 10 FPS
video). Figure 9(b) shows the comparison of inference performance between perfect data alignment and our
method. Since there is no statistical difference between the two methods, the data alignment error is negligible in
PATCH. The data alignment module assumes that the data from the lightweight modality is clean and serves as a
reference for aligning the corrupted modality. However, if the reference modality is also corrupted, the alignment
module will be affected. Although the lightweight modality is typically more robust in multimodal systems and
the Transformer-based alignment module can provide tolerance to the noise, the alignment error will accumulate
when the data corruption ratio dramatically increases in the reference modality

4.5 Impact of Top-K Feature Pair Ranking
The Top-K feature pair ranking module is used to reduce the computation overhead of ranking feature pair
configurations. Figure 10 summarizes the impact of the 𝐾 across all these nine models with more than 400
feature pairs, which controls how many feature pairs will be reserved to search for the optimal imputation
configuration. A large 𝐾 will reserve more feature pairs, which guarantees the optimal imputation configuration
will be selected by PATCH. However, a large 𝐾 will also introduce significant training overhead since each
imputation configuration needs to train a feature mapping using FMAE. We observe that the optimal feature
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pairs always fall within the top 20% of the feature pair for all the multimodal models we tested. Therefore, we
select 𝐾 = 20% as the best trade-off between accuracy and computation overhead in PATCH.

4.6 Impact of Training Overhead and Running Time
In this experiment, we assess the training overhead in the training phase and the inference latency of each model
in the testing phase. Fig.11(a) illustrates the relationship between the training data size and the inference accuracy.
Since PATCH serves as a plug-in module to the original model, it can achieve comparable inference accuracy
with only 10% of the original training data. The T-Late and T-Geo models use the loss point as their evaluation
metric, which leads to an inverse relationship between the metric value and system performance. A lower loss
point value indicates better performance for these models, which is in contrast to the other models.

Fig.11(b) illustrates the training overhead of PATCH compared to the overhead of retraining the original model.
Across the nine models considered in this study, the average training overhead of PATCH is only 27.4% of the
time required for retraining the original model. The computation overhead mainly arises from training the FMAE
to select the optimal feature pair. We observe that even for the most complex multimodal models, such as T-Late,
the training overhead is only 13.8% of the retraining time for the original model.
Fig.12 presents the inference latency of each model in the testing phase.PATCH only need 11% and 36%

inference time compared to the Blocking method and MobiSys 21, respectively. Although the inference latency of
PATCH is higher than the Non-Blocking method due to the extra computing overhead of the plug-in framework,
PATCH brings 14.8 % accuracy loss reduction on average, which makes the trade-off between accuracy and
latency still worth. In systems where latency is critical, such as autonomous driving, PATCH introduces only a 6%
average inference latency increase for the T-late and T-geo models. These results demonstrate that the PATCH is
a practical approach in both training and testing phases for distributed multimodal systems.

Overall, given the varied neural network structures and features, PATCH offers an individual-specific solution
for nine multimodal models designed for non-blocking inference. Compared to the solution of retraining the
original model, PATCH significantly reduces the training overhead by an average of 72.6% using just 10% of
the original training data. This makes the training cost for PATCH feasible. Additionally, it delivers an average
prediction accuracy boost of 14.8% with a mere 6% increase in inference time for time-sensitive scenarios.

4.7 Impact of Multi-Task Learning
Figure 13 shows the impact of multi-task learning on PATCH. Overall, multi-Task learning brings a 9% accuracy
improvement on average for the nine multimodal models, compared to the single FMAE task training strategy.
For seven out of nine models, the accuracy difference between PATCH with MTL and the original models
without data missing (gold standard) is less than 5%, significantly improving the robustness of PATCH against
missing/corrupted sensor data. By setting the FMAE as an auxiliary task to the original model, PATCH avoids
overfitting while providing more mutual information to the existing multimodal models.

4.8 Case Study
Finally, we evaluate PATCH in three real-world cases: battery reliability variation, wireless network fluctuation,
and real-world human activity recognition.

4.8.1 End-to-End Human Activity Recognition Task. In this study1, we collect a Human Activity Recognition
(HAR) dataset from 10 participants (8 males and 2 females with ages ranging from 20 to 30+). For each participant,
we collect eight actions of their daily activities (e.g., touching surfaces, drinking, picking up the phone, walking,
sitting, running) using a Moto 360 smartwatch and a Samsung Galaxy A02S smartphone. One participant wears

1Our study is conducted under the IRB approval at the local institution.
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the smartwatch and puts the smartphone in their pocket during the data collection process. And we collect the
accelerometer and the gyroscope data on the smartphone and smartwatch.
In this HAR task, data corruption occurs for two reasons. First, the position of the smartwatch is crucial for

our system to perform stable activity recognition. However, the orientation/position of the smartwatch may
change irrelevantly during the experiment process, such as moving up and down or rotating from side to side.
The noise introduced by these changes in wearing status can obscure the true signal from the user activity.
Secondly, due to the adapted Bluetooth communication between the smartwatch and smartphone, the throughput
of the smartwatch is not always stable, owing to the sniff mode [95]. This fluctuation in throughput causes the
Bluetooth throughput to drop to near-zero levels and interrupts data transmission. Data corruption resulting from
improper smartwatch orientation or positioning makes up 10.1% of the entire dataset, while issues stemming
from Bluetooth represent 7.9% of corrupted data. In public applications, users might not consistently ensure
proper device positioning or maintain stable Bluetooth connections between smartphones and smartwatches,
which could lead to even higher rates of data corruption than we observed in our experiment. These two factors
contribute significantly to the misalignment and corruption of the data during the experiment.
In the PATCH System, the Data Alignment section serves as the preliminary processing step for input data

under situations with unknown delays. The Data Alignment section will assess the data corruption ratio (ranging
from 0% to 90%) of the input modality based on the reference modality and selects the corresponding setting for
feature selection and pre-trained data imputation sections. Fig.14 illustrates the average accuracy of an RNN-based
model with and without PATCH. Our study finds that PATCH significantly improves the accuracy of the original
RNN-based model by about 4% across different users. Nonetheless, PATCH does not benefit every user in our
study. For instance, as demonstrated in Fig.14, the prediction accuracy for User 5 decreased by 0.3% when using
PATCH compared to the original RNN-based model. This drop in performance is attributed to imprecise data
alignment, which leads to the inappropriate selection of the data corruption ratio and the corresponding pre-
trained data imputation module. This misalignment impacts the performance of data imputation. Consequently,
any anomalous behavior that results in inaccurate alignment can also constrain the effectiveness of PATCH. The
overall experimental result shows that PATCH not only improves the stability of the self-build HAR model under
network fluctuation and data corruption but also makes the original model more robust to user diversity and
noise of the experiment.

4.8.2 End-to-End Event Parsing Task. In this study, we conducted an Event Parsing task in a real-world scenario.
It is known that network bandwidth fluctuation is a common phenomenon in daily life. For instance, during
an online ZOOM meeting, the network status affects sound and video quality. In most cases, while the sound
continues, the video may stall at a previous scene when network bandwidth fluctuates, greatly affecting the
quality of the meeting. Similarly, network fluctuation can affect multimodal systems, such as real-time event
parsing based on video and audio inputs. In this study, we performed the Event Parsing task using the public
AVE dataset with 400 test cases to simulate various daily events (like a dog barking or a train passing with a
whistle). In the experiment, two mobile devices were used. The first device streamed films featuring specific
events with synchronized video and audio signals. This device was carried by an individual moving through a
predetermined route in a building. Due to uneven network coverage within the building, certain points along
the route experienced robust network connections, while others suffered from poor connectivity, potentially
resulting from signal blockage. As the device moved, it encountered varying network conditions, leading to
potential data corruption. Meanwhile, the second device was stationed in a room with consistent and reliable
network coverage. This stationary device received the video and audio signals transmitted by the mobile device
and conducted event parsing. For the purposes of this study, we classified the corruption levels of the received
signal into three categories: Low (with less than 35% corrupted data), Medium (with 35% to 65% corrupted data),
and High (with over 65% corrupted data).
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Fig.15(a) depicts the cumulative distribution of the data corruption ratio for 400 cases. While the results indicate
there only 35% of the case are suffering data corruption at the Low level, more than 65% of cases are experiencing
a medium or heavy level of data corruption, significantly reducing the accuracy of event parsing. Fig.15(b) shows
a comparison between the prediction results of the original AVE model and PATCH across three levels of data
corruption. PATCH outperforms the original model (non-blocking) and retrained model, achieving a prediction
accuracy improvement of 4.9% and 1.8%. This study illustrates the compatibility of PATCH with various data
corruptions that result from the partial/total data missing in real-world scenarios.

4.8.3 Power Reliability. The power reliability is strongly correlated to the work status of the wireless sensor.
The abnormal working status of the sensor node will also affect the performance of the distributed multimodal
system. Existing studies have revealed the correlation between the battery level of IoT nodes and the reliability
of the sensor [19]. Based on this correlation, we simulate the battery drain curves when the sensor nodes were
deployed in the wild. Fig. 16(a) shows an example of the battery drain curves. We then evaluate PATCH on
various power reliability levels. Fig. 16(b) shows the mean accuracy drops under the three battery levels (e.g.,
33%, 66%, 100%). Overall, the mean accuracy improvement is 10.4% across the five application scenarios when the
battery level is low (e.g., 33%). Also, we observed the state-of-the-art suffers from a significant accuracy drop in
autonomous driving (CARLA) and human activity recognition (OPPO), which can cause severe car accidents or
delayed medical helps in practice.

4.8.4 Network Dynamics. Network dynamics play an essential role in the performance of multimodal systems. In
this experiment, we evaluate PATCH using real-world wireless network traces [80]. The real-world network data
was collected in a radius of 250 meters with 1184 clusters. We evaluated PATCH within 20 randomly selected
separate clusters across this range. Fig. 17(a) shows an example of the wireless network traces when the user
downloads a 1MB file in different clusters. We observe that the utilization rate ranges from 41% to 92%. Fig. 17(b)
shows the mean accuracy drop under various network bandwidth fluctuations. We observe that PATCH improve
the prediction accuracy by up to 20% compared to the original model and 13% against the state-of-the-art. For
all network traces, PATCH achieves an acceptable accuracy drop level of 1.9%, increasing the stability of these
systems and generating reliable predictions under various network bandwidth fluctuations.

5 RELATED WORK

Cross-modality Data Imputation The purpose of a cross-modality imputation is to predict one modality
from another. The methods in this field can be classified into three categories: supervised [39, 48, 58, 67, 78, 79],
semi-supervised [49, 74], and unsupervised models [44, 94], depending on if the training data contains the ground
truth labels. Recently deep learning models have been used to automatically learn features with better descriptive
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power [32, 53, 67, 78, 79]. These methods, however, exhibit certain limitations when it comes to data imputation
or synchronization.

For instance, in the study conducted by [58], deep convolutional and LSTM Recurrent Neural Networks were
utilized for Multimodal Wearable Activity Recognition. Although this framework enhances system performance in
activity recognition when applied to homogenous sensor data, it relies on linear interpolation and normalization
to process missing data. While linear interpolation may be useful for handling isolated missing values, it becomes
less reliable for feature extraction as the amount of missing data increases over time, leading to a decline in
accuracy.
In another study by [67], a multiple-layer perception (MTL) was proposed as a multi-task model for context

recognition. To manage absent sensors, they utilized sensor dropout and weighted each available feature. However,
the importance of each sensor type is not uniform. This approach might be applicable for less critical sensors
such as accelerometers or gyroscopes, but it falls short if key sensor data in a multimodal system is missing. This
limitation becomes particularly evident in event parsing where visual data is significantly more important than
audio data, especially when only two modalities are available.
The research by [78] and [79] offers valuable strategies for managing IoT sensor data noise using a unified

Deep Learning Framework, which also evaluates the impact on system latency and energy consumption and
presents solutions for data alignment. Nevertheless, in some multimodal applications, the resilience to noise is
already integrated into the model. Consequently, data corruption that leads to partial or complete data loss or
delay can have a more damaging effect on system performance. Our cross-modality imputation strategy could
provide a more robust solution to severe instances of data corruption.

Low-latency Deep Learning in IoT Systems Prior work mainly focuses on optimizing resource-accuracy
trade-offs to reduce latency in IoT systems [9, 28, 29, 41, 86]. These systems can find an optimal configuration by
analyzing the impact of configurations/knobs (e.g., resolution) on resource consumption (e.g., bandwidth) and
accuracy. Although significant progress has been made, these systems will all block inference when employed
in a distributed multi-modal context — i.e., if one stream is much larger than the other or if wireless network
bandwidth results in one data stream being more impacted than another, the slower stream will block the entire
inference pipeline. Therefore, the problem of asymmetric data transmission and missing data due to network
dynamics and sensor malfunction still remains a grand challenge in distributed multi-modal learning. Recent work
attempted to investigate non-blocking inference by finding the optimal linear prediction using block-missing
multi-modal data streams without imputing missing data [82, 84]. It decomposes the multi-modal model into a
set of regression tasks and then builds regression models for these tasks. However, since these optimizations are
model-specific, it is difficult to integrate the regression model into various multi-modal models that leverage
different fusion techniques. PATCH serves as a plug-in module to enable non-blocking inference in the existing
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multimodal model. It is a generic and configurable software solution that can handle asymmetric data generation
and is applicable to complex multi-modal models.

Data Alignment on Distributed Wireless Sensor Networks In distributed multi-modal learning, a shared
time can be costly, and IoT devices are often equipped with low-cost clocks that can drift quickly and unpre-
dictably [83]. Dynamic time warping [1, 27, 42, 90] and canonical correlation analysis [30, 63, 91, 92] were
explored to align data. However, their methods assume the raw data is from a single modality. Thus, the existing
clock synchronization methods are not ideal for aligning multimodal data streams in IoT systems [55, 69]. PATCH
contains a lightweight data alignment module that is robust to data-missing or poorly aligned data streams
without requiring external synchronization mechanisms.

6 DISCUSSION

Potential Security Risks PATCH imputes missing data using partially-available sensor data. However, the
sensor dataset could be compromised by various attacks such as data poisoning [37, 77, 87], backdoor attacks [25,
54, 68]. For example, researchers have proposed data poisoning attacks against autoencoder-based anomaly
detection models [8]. In addition, a number of defense methods [5, 12, 16, 73] have been proposed to mitigate the
security and privacy issues of machine learning systems. In the future, wewill adopt security and privacy strategies
against potential malicious attacks. Moreover, apart from machine learning security issues, we acknowledge
the existence of cyber-physical security issues in the distributed multimodal system. In the future, we will also
enhance the software and network security (e.g., using firewalls, Anti-Virus software) to protect the internal
deep learning-based models.

Generalisation and Training Labels Since each multimodal model has a distinct network and feature design,
even with the same type of input, the best imputation feature pair will also not be the same. As a consequence,
each PATCH framework needs to be trained separately to fit the unique feature structure and network to perform
the auxiliary task of data imputation. However, the learning approach of PATCH is also limited by the original
model. All ten multimodal models evaluated in this study are supervised learning, which requires labeled training
data. We plan to explore the combination of PATCH with other semi-supervised or self-supervised learning
models to minimize reliance on labeled data. Additionally, we aim to develop a framework tailored to the sensor
type, capable of accommodating multiple models within a single trained framework.

7 CONCLUSION
We present PATCH, a framework to enable non-blocking inference of distributed multimodal models. PATCH
serves as a plug-in module in the existing multimodal model and thus does not need to retrain the original
deep learning model. PATCH consists of a cross-modality feature imputation module, a lightweight feature pair
ranking module, and a data alignment module. We implement PATCH in nine off-the-shelf multimodal models
using five public datasets and one self-collected dataset. And we also evaluate PATCH in four real-world scenarios.
Experimental results show that PATCH can support various existing multimodal models and fusion strategies
and it outperforms the state-of-the-art by up to 13% mean accuracy using only 10% of the training data.
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