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ABSTRACT
Recent years have shown substantial interest in revealing vulner-
ability issues of voice-controllable systems on smartphones and
smart speakers. While significant prior works have leveraged in-
audible signals to attack these smart devices, smart earbuds present
unique challenges and vulnerabilities due to their extreme hard-
ware constraints. In this paper, we present EchoAttack, a practical
inaudible attack system for smart earbuds. The primary innovation
of EchoAttack is the ability to leverage both indirect and direct
paths to attack smart earbuds. To search for the optimal path, we
design a path-searching algorithm based on the attenuation model
of ultrasound. We also propose a novel approach to remove har-
monics noise, which improves the attacking signal’s SNR further.
Finally, we propose using Zigbee radios to sniff the Bluetooth signal
and enable a hidden feedback channel without the victim’s aware-
ness. We implement the EchoAttack prototype using off-the-shelf
hardware components and evaluate the prototypes in four typical
indoor and outdoor scenarios using six smart earbuds. Experimen-
tal results show that EchoAttack outperforms the pure direct-path
attack by 75.8% on average in terms of attack success rate.
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• Security and privacy→ Security in hardware;Hardware at-
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1 INTRODUCTION
Smart earbuds (e.g., Airpods, Pixel Buds) have become increasingly
popular in recent years [1]. Once connected over Bluetooth, these
earbuds often provide speech recognition technologies that allow
users to control surrounding objects, such as smartphones, smart
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Figure 1: Illustration of EchoAttack at a bus stop.

speakers, or smart home devices, by converting spoken words to
machine-readable formats. A wide variety of voice-controllable sys-
tems, such as Apple’s Siri, have been developed for smart earbuds.

Prior work has revealed several vulnerability issues of voice-
controllable systems. For example, recent studies have shown the
feasibility of using ultrasound to attack smartphone voice assistants
based on its non-linearity effect [2, 3]. Although prior work has
proposed various ultrasound-based attacks using smartphones, this
paper mainly focuses on presenting unique challenges and vulnera-
bility issues of smart earbuds due to the earbud’s extreme hardware
constraints.

Earbuds Vulnerability Compared to smartphones, smart ear-
buds are more vulnerable based on the two observations (§ 3). First,
earbuds are worn in the ears, the location of which can be easily
localized in some deterministic scenarios (e.g., gym, bus stop) by
an attacker. In comparison, users may place their smartphones ar-
bitrarily in their pockets or bags, making such ultrasound attacks
hard to realize in practice. Second, the computation resources on
earbuds are much weaker than those on smartphones [4]. Thus,
software defense methods (e.g., Voice Match [5]) are hard to be
implemented on earbuds.

Challenges While smart earbuds are more vulnerable than smart-
phones, carrying out successful attacks by exploiting these vulnera-
bilities is not trivial. First, the microphones on smart earbuds often
have short sensing ranges and a narrow field-of-view (FoV) [6, 7],
making it difficult to receive the attacking signal in real-world sce-
narios. Additionally, the existing ultrasound attack assumes that the
microphone always faces the attacking speaker, which is not always
true [2, 8]. Second, the non-linearity effect on smart earbuds is not
as strong as on smartphones, meaning that small harmonic noise
can compromise the quality of the attacking signals and reduce the
attack success rate [9]. Finally, current ultrasound attack systems do
not provide a feedback mechanism to inform the attacker about the
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success of their attack. Nevertheless, implementing such feedback
channels is difficult as attackers typically have no control over the
victim’s devices [2, 8].

Overview of EchoAttack This paper addresses the above limita-
tions, proposing EchoAttack, a practical ultrasound attack system
for smart earbuds. The key idea is to leverage both indirect and
direct paths to attack earbuds without access to the victim’s devices.
The attacking speaker can inject unauthenticated voice commands
into ultrasound frequency, enabling earbuds to decode without the
victim’s awareness. Additionally, EchoAttack listens to surrounding
Bluetooth signals to detect attack success. Figure 1 illustrates an
attacking scenario where an attacker deploys a speaker near a vic-
tim at a bus stop, leveraging Bluetooth signals to enable a feedback
channel and searching for the optimal attack path among in-direct
(i.e., blue dashed line) and direct (i.e., red solid line) paths within
the target area (i.e., green dashed box).

We design three key components to ensure the reliability of
EchoAttack. First, we employ the ultrasound attenuation model to
estimate the received signal strength (RSS) at the victim’s device
for optimal attack path searching. We assume the attacker knows
the position and material of reflectors near the victim. Based on
this information, we design a lightweight algorithm to compute all
indirect and direct paths and construct a path table without know-
ing the precise location and orientation of the victim’s device. We
then exhaustively search for the optimal path in the path-searching
table. Second, to further enhance the signal-to-noise ratio (SNR) of
the attacking signal, we propose a harmonic noise removal algo-
rithm to minimize the harmonic noise leakage from the modulated
signal. Third, we sniff Bluetooth signals from the victim’s device
to determine whether the voice assistant is triggered. We design a
Zigbee-based sniffer for recording Bluetooth signals and addressing
unknown frequency hopping in Bluetooth. Then, we develop a
decision-tree-based model to extract Bluetooth signal patterns as
the feedback channel for the attacker.

We implement the EchoAttack prototype using cost-effective
hardware components, including an ultrasound speaker array, an
amplifier, a wave generator, and CC2530 Zigbee radios. We evaluate
the EchoAttack prototype against six smart earbuds (i.e., Pixel Buds,
Galaxy Buds, JBL Buds, AirPods 1, AirPods 2, Bose QuietComfort
45) in four scenarios: a public study area, bus stop, gym, and hallway.
The experimental results show that EchoAttack achieves an 88.1%
mean attack success rate across six earbuds, which is 75.8% higher
than the pure direct-path attack in all scenarios.

Contributions We summarize our contributions as follows:

• We introduce EchoAttack, a practical inaudible attack system
that exploits both indirect and direct paths to target smart
earbuds without the victim’s knowledge.

• We develop a path-searching technique that leverages the
ultrasound attenuation model to identify the optimal attack
path efficiently.

• We design a harmonics noise removal algorithm to minimize
harmonic noise and enhances the SNR of the attacking signal.

• We present the idea of using Zigbee radio to intercept the
Bluetooth signal and establish a covert feedback channel
without the victim’s awareness.

• We design and implement the EchoAttack prototype using
commercial-off-the-shelf hardware components and conduct
comprehensive experiments in real-world scenarios. Experi-
mental results demonstrate that EchoAttack surpasses the
pure direct-path attack in all tested scenarios.

2 BACKGROUND AND THREAT MODEL
2.1 Ultrasound Attack on Smart Device
Modern voice recording systems consist of four main components:
1) microphones converting sounds to electrical signals, 2) pre-
amplifier amplifying electrical signals by a gain of 10–100×, 3)
an analog-to-digital converter (ADC) converting analog signals
to digital signals, and 4) low pass filters (LPFs) cutting off signals
at 20 kHz [2]. These modules are linear systems within audible
frequency (e.g., 20 Hz – 20 kHz), signifying that input signals are
linearly proportional to outputs. However, beyond the audible fre-
quency range, microphones, pre-amplifiers, and ADCs exhibit non-
linearity, which can be modeled using Eq. 1:

𝑆𝑜𝑢𝑡 (𝑡) = Σ∞𝑖=1𝐴𝑖 (𝑆𝑖𝑛 (𝑡))𝑖 (1)

where 𝑆𝑜𝑢𝑡 is the output signal, 𝑆𝑖𝑛 is the input signal, and 𝐴𝑖

represents the coefficient to the corresponding term. Although the
output signal is theoretically an infinite sequence, third or higher
terms can be ignored due to weak signal strength. The quadratic
term (𝑆𝑖𝑛 (𝑡))2 produces harmonics and cross-products, generating
new frequencies and recovering the audible signal. Audible signal
𝑓𝑎 can be modulated on an inaudible frequency 𝑓𝑐 using amplitude
modulation in Eq. 2 [8]:

𝑆𝑖𝑛 (𝑡) = (𝑐𝑜𝑠 (2𝜋 𝑓𝑎𝑡) + 1)𝑐𝑜𝑠 (2𝜋 𝑓𝑐𝑡) (2)

After applying Eq.2 to Eq.1, both the audible frequency component
𝑓𝑎 and inaudible frequency 𝑓𝑐 , as well as their harmonics (e.g.,
2𝑓𝑎 , 3𝑓𝑎) and other cross products (e.g., 𝑓𝑖 − 𝑓𝑎 , 𝑓𝑖 + 𝑓𝑎) can be
extracted. After applying LPFs, high-frequency components (>
20 kHz) are eliminated, leaving the audible frequency component
𝑓𝑎 . The nonlinearity effect of modern voice recording systems has
been exploited to inject unauthenticated voice commands into voice
control devices [2, 8, 10, 11]. Since the entire attack process is
inaudible, it raises significant privacy concerns and can lead to
serious security issues [3].

2.2 Threat Model
Attack Scenario: We consider a scenario when a victim wears
smart earbuds that support hands-free voice assistant wake-up. The
victim can freely move within the sensing area and turn their head
in any direction. The attacker has a portable ultrasound speaker to
attack the victim’s earbuds.

Attack Goal: Considering the earbuds user can use the voice as-
sistant to control their phone (e.g., opening voice recording, reading
emails), the attacker’s goal is to activate the voice assistant through
the victim’s earbuds and execute inaudible commands. For example,
the attacker can force the phone to initiate a call to jam emergency
services such as 911. In addition, the attacker can turn the victim’s
smartphone to airplane mode to make him/her lose connection
or turn on the flashlight to drain the battery quickly [12, 13]. To
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ensure stealthiness, the attacker should be away from the user to
avoid the victim’s awareness.

Assumptions: We assume that the attacker and victim are at
the same scene and the attacker is out of the field of view of the
victim. The victim is within a target area where the attacker knows
the rough location and the information (including location and
reflection coefficients) of surrounding reflection planes near the
victim (like walls and screens). Note that the attacker does not know
the exact location and orientation of the victim’s device.

3 MOTIVATIONS
While a number of recent efforts have been exploring the problem
of inaudible attacks on smartphones [2, 8, 10–13], we face unique
challenges in the context of smart earbuds since both the hardware
and the software design vary widely between smartphones and
smart earbuds.

3.1 Microphone Sensing Capability
Smart earbuds differentiate themselves from smartphones in two
key matrices: directionality and sensing range [6].

Directionality Smart earbuds havemultiple built-inmicrophones
facing various directions [7, 14]. For example, the second-generation
AirPods Pro has two beam-forming microphones and an inward-
facing microphone [15]. These microphones are either used as noise
canceling or beamforming. Therefore, the earbuds will record only
the signal from a small FoV.

Sensing Range Since smart earbuds are designed to sense audi-
ble sound from the mouth and inside the ear, the sensing area is
significantly smaller than that of smartphones. Besides, due to the
limited battery size, the gain of the pre-amplifier is also lower than
that of smartphones [16]. Therefore, smart earbuds have a much
shorter sensing range compared with smartphones.

We compare the directionality and sensing range between a pair
of smart earbuds (Google Pixel Buds A-Serials) and a smartphone
(Google Pixel 4). In this experiment, we put the earbuds and phone
at the same distance (1 m) from the ultrasound speaker and changed
their orientations (0◦ – 360◦). The RSS is shown in Figure 2(a). The
results show that smart earbuds have significantly smaller FoV and
sensing ranges than smartphones.

Another underlying assumption in many existing inaudible at-
tacks is that the victim device always faces the adversarial device [3].
However, in the context of smart earbuds, the RSS can be lower
than the noise floor if the microphone does not face the speaker
due to the victim’s mobility. Thus, the victim’s device will not
recognize the unauthenticated voice command. To validate the hy-
pothesis, we place a smartphone and a smart earbud 1 m away from
a speaker (Figure 2(b)). We then leverage a direct-path attack [8] to
activate the Google Voice Assistant by injecting voice commands
into inaudible sound. We repeat the experiment 50 times under
each setting. We observe that when the microphones are toward
the speaker, both smartphone and smart earbuds achieve a high
activation rate (100% for the smartphone and 90% for the smart
earbuds). However, when the microphones are perpendicular to
the speaker, the activation rate of the smart earbuds drops to 0%
due to their narrow FoV and short sensing range. In contrast, the

(a) RSS of directionality and sensing
range
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tion rate using direct-path attack [8]

Figure 2: Comparison of smart earbuds’ and smartphones’
directionality and sensing capability.

smartphone can still be activated at a 100% success rate. There-
fore, improving the SNR of inaudible attacks for smart earbuds in
practical scenarios is challenging.

3.2 Software Vulnerability
Although smart earbuds have lower sensing capability, they have
higher software vulnerabilities than smartphones [17–19]. To pro-
tect user privacy, many voice assistant systems (e.g., Siri and Google
Voice Assistant) have voice match techniques that can tell the dif-
ference between legal users’ voices and filter out unauthenticated
users [20–22].

To measure the software vulnerability between smart earbuds
and smartphones, we conduct a user study with eight participants
(7 males and 1 female). We examined four voice assistants (Siri,
Google Voice Assistant, Alexa, and Bixby) using six smart earbuds
and four smartphones (Table 1). We first set up voice matches on eli-
gible voice assistants (Siri and Google Vice Assistant) using𝑈𝑠𝑒𝑟1’s
voice. Then, we ask the rest of the participants to activate voice
assistants. Each user repeats ten times to activate the voice assis-
tant. Besides real human voice, we leverage Voicemaker [23] to
generate 47 voice commands and then use the synthetic commands
to activate voice assistants. Table 1 shows the activation rates us-
ing unauthenticated voice commands. We have two observations.
First, Alexa and Bixby do not have voice match techniques, so they
cannot prevent unauthenticated users from activating their voice
assistants. Second, voice match technology can prevent unauthenti-
cated users from activating voice assistants on smartphones. None
of the unauthenticated voice commands can activate the voice as-
sistant on voice-match-enabled smartphones. However, when the
smart earbuds are connected to the phone, some unauthenticated
voice commands can bypass the voice match and activate the voice
assistant. For example, the activation rates using unauthenticated
voice commands are 34%, 100%, and 26% on AirPods 3, Beats Stu-
dio, and Pixel Buds, respectively. We hypothesize that when smart
earbuds are connected to the smartphone, the voice match algo-
rithm will be offloaded to the earbuds. Due to hardware limitations
(e.g., limited Digital Signal Processors (DSP)) on earbuds, some may
not recognize unauthenticated voice commands. Therefore, it is
important to investigate the potential inaudible attacks on earbuds.
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Table 1: Software vulnerability of earbuds and phones when activating voice assistant using unauthenticated voice commands.

Model Phone OS Voice Control Voice Match Activation Rate

Earbuds

AirPods 3 iOS 15.6 Siri ✓ 34%
Beats Studio iOS 15.6 Siri ✓ 100%
Pixel Buds Android 12 Google ✓ 26%

Sony WF1000XM4 Android 12 Alexa ✗ 100%
JBL Reflect Flow Android 12 Alexa ✗ 100%
Galaxy Buds Live Android 12 Bixby ✗ 100%

Phones

iPhone X iOS 15.6 Siri ✓ 0%
Galaxy A02s Android 11 Google ✓ 0%
Galaxy A02s Android 11 Alexa ✗ 100%
Galaxy s10e Android 12 Bixby ✗ 100%
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Figure 3: The system overview. EchoAttack can leverage
both indirect and direct paths to attack smart earbuds. It has
a harmonic removalmodule to enhance the signal’s SNRand
a passive feedback module to monitor the attacking results.

4 SYSTEM DESIGN
This section describes the three design components of EchoAttack.
First, the key idea to enhance the signal strength of inaudible at-
tacks on smart earbuds is leveraging the indirect path between the
attacking speaker and the victim device so that the microphone
can capture the inaudible signal within the small FoV [24]. Figure 3
shows a typical attacking scenario where the microphone is not
toward the speaker. In this case, if we rely on the direct path to
attack the victim’s device, the SNR will be extremely low since the
attacking signal is outside the microphone’s FoV. To address the
challenge, EchoAttack can leverage a reflective plane (e.g., wall,
screen, table) to attack the victim’s device via an indirect path. And
we design a lightweight algorithm to search for the optimal path.
Second, we design a harmonic removal algorithm to remove har-
monic noises to improve the SNR of inaudible attacks further [25].
Finally, we propose a passive Bluetooth-based feedback module
to collect hidden acknowledgment data from the victim device.
The feedback module can tell the attacker whether the attack is
successful or not without the victim’s awareness.

4.1 Optimal Path Searching
This module aims to identify the optimal attack path between the
attacking speaker and the victim’s device. EchoAttack relies on
several assumptions that need to be considered. Figure 4 shows
the victim’s location 𝑇 is within a target area 𝐴 and there are
reflective surfaces R = {Ri} surrounding the victim. The attacker

𝑅!

𝑅"

T

S

A

𝑎#

Figure 4: Attack victimwhen he/she is in the estimated area.

can determine𝐴 and the position of R relative to 𝑆 , once they place
the speaker at the location 𝑆 . To launch an attack on a victim within
area 𝐴, the attacker identifies specific paths that allow the speaker
𝑆 to cover𝐴. EchoAttack divides𝐴 into smaller areas {𝑎𝑖 , 𝑖 ∈ N , 𝑖 >

0}with size 𝑙3, where 𝑙 is the side length of each𝑎𝑖 . Also, EchoAttack
does not know the exact victim’s orientation, but it can estimate
the range of orientation depending on attacking scenarios. For
example, when a victim sits by a desk and looks at a screen, the
victim’s orientation is against the screen and moves within a small
range (like 30◦ left or right). Suppose that the orientation is \ . Given
{𝑆, 𝑎𝑖 , \,R}, we can compute the direct path and all indirect paths
(reflected on one or more reflect planes in R). The path is denoted
by its length, the orientation of the attack speaker, and the incident
angle when it arrives 𝑎𝑖 . We can derive all paths in Eq. 3:

P(𝑆, 𝑎𝑖 , \,R) = {(𝑙 𝑗 , 𝛽 𝑗 , 𝛼 𝑗 ), 𝑗 <=
|R |∑
𝑥=0

𝐶𝑥
|R |} (3)

where 𝑙 𝑗 is the path length, 𝛽 𝑗 is the orientation of the attack speaker,
and 𝛼 𝑗 is the incident angle of the ultrasound to victim earbuds.

We employ the ultrasound attenuation model to identify the
optimal path in P for the given 𝑎𝑖 and \ . Inaudible signal attenua-
tion depends on distance, incidence/reflection angle, and reflective
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surfaces. Attenuation due to distance follows the inverse-square
law [26], making inaudible signal strength inversely proportional
to the square of propagation distance. Microphone sensitivity is
affected by the angle at which the inaudible signal hits it. Peak sen-
sitivity occurs with the sound incident at right angles to the sensing
surface and drops off following a cosine law. For instance, the re-
ceived signal drops to 86% of peak sensitivity at a 30◦ incidence
angle. When the inaudible signal encounters an object, some waves
bounce off while others attempt to pass through or be absorbed.
With flat surfaces (e.g., mirrors), incidence and reflection angles are
equal. In practice, the attackers can intentionally select solid and
flat reflection planes1. When obstacles are small (e.g., equal to or
smaller than the inaudible signal wavelength), waves bypass the ob-
stacle and spread into the shadow region behind it [27]. Diffraction
amount is inversely proportional to acoustic frequency [3].

Assuming attacker speaker signal strength is 𝐼𝑠 , the earbuds’ RSS
𝐼𝑟 can be formulated as Eq. 4:

𝐼𝑟 =
𝐶𝐿 (

∏
𝐶𝑟𝑖 )𝐶𝛼𝑐𝑜𝑠 (𝛼) · 𝐼𝑠

𝑓 · 𝐿2
+ 𝑁𝑜𝑖𝑠𝑒 (4)

where 𝐶𝐿 is the attenuation coefficient with path length, 𝐶𝑟𝑖 is the
reflection coefficient that the path passes, and𝐶𝛼 is a device-related
incident angle coefficient which we can get with the pre-attack test.

In P(𝑆, 𝑎𝑖 , \,R), we search for the optimal path (either direct or
indirect path) with the largest 𝐼𝑟 , that is 𝑝𝑖 = {𝑝 |𝑚𝑎𝑥{𝐼𝑟 (𝑝)}, 𝑝 ∈
P(𝑆, 𝑎𝑖 , \,R)}. In practice, the location of the 𝑆 is often known
and fixed, e.g., on a table, chair, or floor. Therefore, we only need
to search for 𝑆’s optimal orientation 𝑜 (𝑜𝑖 (𝑆, 𝑎𝑖 , \ ) = 𝛽, 𝛽 ∈ 𝑝𝑖 ).
As the ultrasound speaker has FoV of at least 60◦ [28], we can
simplify the calculation by dividing the 360◦ of victim orientation
into eight directions, with a step of 45◦ to ensure coverage, and
the path can cover the 360◦ orientation of the victim. After all the
computation, there are |𝑎𝑖 | × 𝑁\ paths, where |𝑎𝑖 | is the number of
searching divisions and 𝑁\ is the number of directions. We combine
the adjacent paths to reduce the search space further. Finally, we
apply the Sobol sequence [29] to draw a path from the path table.
On average, for a path table with 𝑁 paths, we need 𝑁

2 tries.

4.2 Harmonic Noise Removal
Existing inaudible attacks leverage Eq. 1 and Eq. 2 to inject audible
voice commands into inaudible sound [3, 8]. However, not only the
audible frequency component 𝑓𝑎 but also its harmonics (e.g., 2𝑓𝑎 ,
3𝑓𝑎) will remain in the demodulated signal after applying LPFs [8].
Specifically, the audible component 𝑆𝑎𝑢𝑑𝑖𝑏𝑙𝑒 is generated from the
even power terms in Eq. 1, which can be derived in Eq. 5:

𝑆𝑎𝑢𝑑𝑖𝑏𝑙𝑒 =

∞∑
2𝑖

𝐴2𝑖 (1 + 𝑐𝑜𝑠 (2𝜋 𝑓𝑎𝑡))2𝑖 (5)

While 𝑆𝑎𝑢𝑑𝑖𝑏𝑙𝑒 is an infinite power series, the signal strength of
the third and higher-order terms is negligible. Therefore, we only
consider the second-order term 𝐴2 (1 + 𝑐𝑜𝑠 (2𝜋 𝑓𝑎𝑡))2, as shown in

1Considering that the reflection on these planes can keep the most signal energy, we
omit the reflection coefficients of the reflectors during the path search.

Eq. 6

𝐴2 (1 + 𝑐𝑜𝑠 (2𝜋 𝑓𝑎𝑡))2 = 𝐴2 +
𝐴2
2
+

2𝐴2𝑐𝑜𝑠 (2𝜋 𝑓𝑎𝑡) +
𝐴2
2
𝑐𝑜𝑠 (2𝜋2𝑓𝑎𝑡)

(6)

where the RSS of the second harmonic 𝑐𝑜𝑠 (2𝜋2𝑓𝑎𝑡) is 1
4 of that of

the target signal 𝑐𝑜𝑠 (2𝜋 𝑓𝑎𝑡).
The harmonic can degrade the voice recognition accuracy of

the victim device and lower the attack success rate. For example,
when we modulated 𝑓𝑎 = 2 kHz target signal to 𝑓𝑐 = 23 kHz carrier,
we observed that the RSS of 2𝑓𝑎 is only 3.755 dB lower than that
of 𝑓𝑎 , significantly degrading the signal-to-noise ratio of the 𝑓𝑎 .
To minimize the impact of the harmonics, we modulate the target
signal onto the carrier by introducing new coefficient terms 𝑏𝑖 in
Eq. 2 and derive the enhanced target signal 𝑆 ′ in Eq. 7,

𝑆 ′𝑖𝑛 (𝑡) = 𝑐𝑜𝑠 (2𝜋 𝑓𝑐𝑡)
𝑛∑
𝑖=0

𝑏𝑖𝑐𝑜𝑠 (2𝜋 · 𝑖 · 𝑓𝑎𝑡) (7)

where 𝑏𝑖 is the coefficient of 𝑐𝑜𝑠 (2𝜋 · 𝑖 · 𝑓𝑎𝑡), and by default 𝑏0 =

1, 𝑏1 = 1. By applying Eq. 7 to Eq. 1, we can derive the target signal
and its harmonics in Eq. 8

𝑅𝑆𝑆𝑓𝑎 = (2𝑏1 +
𝑛∑

|𝑖±𝑗 |=1,𝑖, 𝑗≠0
𝑏𝑖𝑏 𝑗 )𝑐𝑜𝑠 (2𝜋 𝑓𝑎𝑡)

𝑅𝑆𝑆2𝑓𝑎 = (
𝑏21
2

+ 2𝑏2 +
𝑛∑

|𝑖±𝑗 |=2,𝑖, 𝑗≠0
𝑏𝑖𝑏 𝑗 )𝑐𝑜𝑠 (2𝜋 · 2𝑓𝑎𝑡)

𝑅𝑆𝑆3𝑓𝑎 = (2𝑏3 +
𝑛∑

|𝑖±𝑗 |=3,𝑖, 𝑗≠0
𝑏𝑖𝑏 𝑗 )𝑐𝑜𝑠 (2𝜋 · 3𝑓𝑎𝑡)

𝑅𝑆𝑆4𝑓𝑎 = (
𝑏22
2

+ 2𝑏4 +
𝑛∑

|𝑖±𝑗 |=4,𝑖, 𝑗≠0
𝑏𝑖𝑏 𝑗 )𝑐𝑜𝑠 (2𝜋 · 4𝑓𝑎𝑡)

· · · = · · ·

(8)

Since the frequency range of human voice is from 100 Hz to
17 kHz [30], the fourth and the higher-order harmonics signal is
likely above the audible frequency. Also, the fourth and higher-
order terms are extremely weak. Therefore, we only remove the
second and the third harmonic. Thus, we set 𝑛 to 3 so that 𝑏2 and
𝑏3 can be derived in Eq. 8, e.g., 𝑏2 = − 1

3 and 𝑏3 = 1
6 . Our final

modulated signal can be derived in Eq. 9

𝑆𝑖𝑛 = 𝑐𝑜𝑠 (2𝜋 𝑓𝑐𝑡) (1 + 𝑐𝑜𝑠 (2𝜋 𝑓𝑎𝑡)+
𝑏2𝑐𝑜𝑠 (2𝜋 · 2 · 𝑓𝑎𝑡) + 𝑏3𝑐𝑜𝑠 (2𝜋 · 3 · 𝑓𝑎𝑡))

(9)

To validate the effectiveness of the new modulation scheme, we
conduct an experiment to compare the normalized RSS of the sec-
ond harmonic and the third harmonic with and without the har-
monic removal module. Figure 5 shows the average normalized RSS
and the error bars covering the 90% confidence interval. We can
see that the harmonic removal module decreases the RSS of the
second harmonic and the third harmonic by 77.6% and 73.9%, re-
spectively. However, there are still harmonic residues. The presence
and strength of harmonics in a microphone can vary depending
on the design and construction of the device. Moreover, the non-
linearity of a device is closely linked to its hardware design, and
the choice of components used can significantly affect the resulting
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Figure 5: Normalized 2nd and 3rd harmonic signals with and
without harmonic removal. The target signal frequency is
2 kHz, and the corresponding 2nd and 3rd harmonic signals
are 4 kHz and 6 kHz.

non-linearity [9]. This means the degree of harmonics and non-
linearity can differ between various earbud models. Therefore, we
empirically state that the performance of our deharmonics varies
among different earbuds, and the detailed performance difference
will be shown in Section 6.

4.3 Hidden Feedback Module From Smart
Earbuds

Earbuds are connected to smartphones with Bluetooth [31, 32],
which operates at 2.4 GHz unlicensed band. We rely on the unique
features of a voice assistant wake-up process to detect whether the
voice assistant is triggered. First, after we finish ejecting the inaudi-
ble signals, we start to sniff the Bluetooth signals emitted during
the voice handover between the earbud and the smartphone. Specif-
ically, Zigbee [33] adopts IEEE 802.15.4 physical layer operating at
the same 2.4 GHz band, which is divided into 16 non-overlapped
channels. As shown in Figure 6, the 16 channels cover most Blue-
tooth channels. We leverage this overlapping to sniff Bluetooth
signals without pairing. Specifically, for each attack, we use 16
Zigbee radios to sample the RSS of the 16 different channels con-
tinuously in a time window. The RSS sampling window lasts 1 ms.
When we obtain 16 RSS vectors indicated as 𝑣𝑟𝑠𝑠 (𝑖) where 𝑖 is the
channel. Each vector contains 𝑛 RSS samples 𝑣𝑟𝑠𝑠 (𝑖) [1] - 𝑣𝑟𝑠𝑠 (𝑖) [𝑛].

For the RSS of 16 channels, we can get an RSS matrix 𝑉16×𝑛 .
To extract the RSS feature of the Bluetooth channels, we need to
remove the Wi-Fi and Zigbee noise from 𝑉16×𝑛 . Different from
Wi-Fi and Zigbee, Bluetooth applies adaptive frequency hopping
technology (AFH) [34]. AFH allows Bluetooth to switch frequency
within Bluetooth channels (79 channels for classic Bluetooth, 40
channels for BLE) and can avoid interference to and from other
devices that operate within its frequency band. Therefore, we first
generate a static noise RSS matrix𝑉𝑛𝑜𝑖𝑠𝑒 when the voice assistant is
not activated and calculate the average noise level of each channel,
Based on 𝑉𝑛𝑜𝑖𝑠𝑒 , we remove the RSS value that is lower than the
average RSS of the static noise at each channel from the voice-
assistant-activated sampling window matrix 𝑉𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 as follows:

𝑣𝑖 𝑗 =

{
−110, 𝑣𝑖 𝑗 < 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑉𝑛𝑜𝑖𝑠𝑒 [𝑖])
𝑣𝑖 𝑗 , 𝑣𝑖 𝑗 ≥ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑉𝑛𝑜𝑖𝑠𝑒 [𝑖])

(10)

where 𝑣𝑖 𝑗 ∈ 𝑉𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 , 𝑖 < 16 and 0 ≤ 𝑗 < 𝑛. This removes most
noise from Wi-Fi and Zigbee without affecting the RSS trend of
Bluetooth signals. After the noise removal, we need to extract

2485Mhz
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Figure 6: Channel overlap between Bluetooth and Zigbee.

the Bluetooth RSS changing pattern. First, we shrink the matrix
𝑉𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 to a RSS vector 𝐸𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 :

𝐸 ( 𝑗) =𝑚𝑎𝑥 (𝑉𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 [𝑖] [ 𝑗]), 0 ≤ 𝑖 < 16, 0 ≤ 𝑗 < 𝑛 (11)

After getting 𝐸, a sliding window𝑤 is applied to 𝐸 to get smoothed
RSS feature vector 𝐹 :

𝐹 (𝑖) =
∑𝑖+𝑤
𝑖 𝐸 (𝑖)
𝑤

, 0 ≤ 𝑖 < 𝑖 +𝑤 (12)

If Bluetooth signals appear, we will observe a higher RSS value in 𝐹 .
We demonstrate feature vectors obtained from a clean environment
in Figure 7 for different voice assistants (Figure 7(a) – Figure 7(d))
and the clean environment noise (Figure 7(e), no voice assistant is
activated). From the results, we can observe RSS changing after the
wake-up command is sent (400 ms), and the change is obvious.

According to the noise-filtered feature vector in a sampling win-
dow, we use a decision tree to extract the unique features for attack-
ing success classification. The decision tree is a common supervised
machine learning model whose structure is tree-shaped, and each
node of the decision tree makes a decision on a specific feature.
Each input of the decision tree consists of a feature vector and a
label. As shown in Figure 7, the RSS values before and after the
voice command are sent have obviously different features. So we
select the features as maximum, minimum, and average peak values
of 300 ms before and after activation and the average RSS difference
of 300 ms before and after activation. From our training results,
the two most important features are the maximum peak value of
300 ms before activation and the minimum peak value of 300 ms
after activation. It should be noted that the decision tree is a value-
based and small machine learning model, so in environments that
have different noise levels, we cannot use the same pre-trained
decision tree. But we can easily train decision trees in different
environments with a small amount of data or get decision trees at
different noise levels in advance.

5 IMPLEMENTATION
As shown in Figure 8, we implement our prototype, including the
acoustic attacker system and the Bluetooth monitoring system,
with commercial off-the-shelf hardware and devices.

For the attacker system shown in Figure 8(a), we make an 8 ×
5 speaker array with 40 ultrasound speaks with 23 kHz central
frequency [28] to transmit ultrasound signals in a long distance. In
addition, we use high-quality full-band ultrasound speaker Vifa [35],
supporting the signal frequency as high as 120 kHz, to attack those
earbuds with non-23 kHz central frequency in general. We use
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Figure 7: Pattern of different voice assistants being activated (a) – (d) and no activation (e). Wake-up words sent at 400 ms
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Figure 8: The implementation details of EchoAttack. (a) acoustic attacker system, (b) Bluetooth monitoring system, and (c)
portable EchoAttack system.

Table 2: The characteristics of the six earbuds in our experiment.

Earbuds System Hands-free Command Central Frequency Max. Distance
Pixel Buds A-Serials Android 11 Google Assistant 23.5 kHz 3 m
Galaxy Buds Live Android 12 Bixby 23.5 kHz 3 m
JBL Reflect Flow Android 11 Alexa 23.5 kHz 1.5 m
AirPods 1st Gen iOS 15.6 Not Supported 31.5 kHz 0.5 m
AirPods 2nd Gen iOS 15.6 Siri 30.5–31.5 kHz 0.5 m

Bose QuietComfort® 45 Android 11 Not Supported 32 kHz 1.1 m

MATLAB running on a laptop computer to modulate the inaudible
signals of attacking voice commands, and the modulated signals are
generated and amplified by a Keysight waveform generator [36]
and an Avisoft portable ultrasonic power amplifier [37], separately.
We use a rotational holder [38] to enable the optimal attacking path
search. The attacker system is powered by a portable battery.

For the Bluetooth monitoring system shown in Figure 8(b), we
use 16 CC2531 USB dongles [39] (called worker dongles) to sample
the RSS values across 16 Zigbee channels. Due to the limited storage
resource on the worker dongles, we use another CC2531 USB dongle
(calledmaster dongle) to control the worker dongles to start channel
sampling a little earlier than the beginning of an attack. The master
dongle and worker dongles are connected to a laptop with a USB
hub. Once the worker dongles are triggered, the sampling period
will last for 1600 ms, and a total of 16 × 1600 RSS values are logged
locally by each worker dongle. Then, the laptop pulls the data from
all worker dongles through the USB port to determine whether an
attack is successful.

As shown in Figure 8(c), we carefully package the attacker system
and Bluetooth monitoring system, which share the same laptop, in a
travel/sport bag. The USB hub and Zigbee dongles of the Bluetooth
monitoring system are powered by the same portable battery.

6 EVALUATION
We evaluate the performance of EchoAttack with six different pairs
of earbuds in four indoor and outdoor scenarios with diverse set-
tings, including diverse attacking distances, background noises, and
surrounding obstacles. We have received the IRB approval from
our institute. In our experiments, we make sure that only the vol-
unteer victim is in the attack range of EchoAttack. Others will not
be affected.

6.1 Experimental Methodology and Setting
Our Earbuds: The characteristics of the six earbuds used for eval-
uation are listed in Table 2. We include all mainstream earbuds (e.g.,
Google, Apple, Samsung, Bose, JBL) supporting voice assistants on
the market. During our experiments, we connect different earbuds
to the corresponding smartphones. Specifically, we connect Google,
JBL, and Bose earbuds to a Google Pixel smartphone with Android
11. And AirPods and Galaxy Buds are connected to an iPhone Xs
with IOS 15.6 and a Samsung A02s with Android 12.
Attacking Speaker Selection: The 6 earbuds have different cen-
tral frequencies ranging from 23 kHz to 32 kHz as shown in Table 2.
For each pair of earbuds, we measure its central frequency via an
enumeration search. Specifically, we modulate with a 2 kHz single
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Figure 9: Our four experiment scenarios include (a) a public study area, (b) a bus stop, (c) the treadmill area in a gym, and (d)
the hallway in our office building. In each scenario, our indirect attack path is indicated as the blue dashed line, and the direct
attack path is shown as the red solid line.

tone on an ultrasound carrier, which is recorded by the earbuds
with perfect direction alignment. Due to the non-linear effect, the
2 kHz single tone appears in the recorded signals. We search differ-
ent frequencies of the ultrasound carriers from 20 kHz to 35 kHz
with 0.1 kHz step length to find the strongest recorded 2 kHz single
tone on the spectrum as the central frequency. Since the frequency
range of the speaker array is 23 ± 2 kHz, we use it to attack Pixel,
Galaxy, and JBL with 23.5 kHz central frequency. The full-band
speaker Vifa is used to attack AirPods and Bose with 30–32 kHz
central frequency.
Attacking Methodology and Performance Metrics: For four
earbuds supporting hands-free command, we first conduct a voice-
assistant-activation attack with “OK Google”, “Hey Siri”, “Hi Bixby”,
and “Alexa”, respectively. After the voice assistant is woken up,
we execute attacks with the voice command “open airplane mode”
for all six earbuds. We define the Attack Success Rate as the ratio
between successful attacks and total attacks to measure EchoAttack
performance.
Experiment Scenarios: As shown in Figure 9, we evaluate our
attack system in four scenarios. The first scenario (S1, Figure 9(a)) is
a public study area, and a board is borrowed to reflect our attacking
acoustic signals. The second scenario (S2, Figure 9(b)) is a bus stop,
and the glass of the bus stop shelter provides our indirect attacking
path. The third scenario (S3, Figure 9(c)) is the treadmill area in
a gym, and the screen of a treadmill is used to build the indirect
attacking path. The fourth scenario (S4, Figure 9(d)) is the hallway in
our office building. Unlike the other three scenarios full of reflection
surfaces, the hallway is a spacious environment where only the
ground can be utilized as a reflection plane.

Moreover, we execute the attack with a portable bag shown in
Figure 8(c) and invite a male volunteer to serve as the victim. The
positions of the victim and the bag are shown in Figure 9(a)-(c), and
our indirect attacking paths are illustrated with blue dashed lines.
The volunteer behaves naturally in the four scenarios according to
his habits. For example, his body and head may move, rotate, and
shake in a certain area as usual.
Attacking Path Search:We measure each earbud’s maximum dis-
tance under an attack over the direct path with the aligned speaker-
earbud direction. As shown in Table 2, the maximum attacking
distance of the speaker array reaches 3 m for Pixel and Galaxy.
However, Vifa has less transmission power than the speaker array,
so it only supports a maximum 1.1 m attacking distance for Bose.

Since the maximum attacking distances among different ear-
buds are different, we adjust the attacking position of the bag for
each earbud. Specifically, we use the maximum distance in each
experiment scenario to estimate the safest attacking position. After
determining the attacking position and the victim’s head position,
we calibrate the indirect attacking path with our path-searching al-
gorithm (Section 4.1). We use the attack success rate of the selected
indirect path to identify the effectiveness of our path searching.
Bluetooth Feedback: For the Bluetooth feedback system (Sec-
tion 4.3), we take an offline training process to generate the attack
success classifier for each earbud in each scenario. Specifically, the
attacker mimics the victim’s behavior in similar scenarios in ad-
vance. The attacker will trigger worker dongles’ recording 400ms
before the wake-up words are played. We collect the RSS data of
the voice assistant activated 400 times with positive labels. Then,
we collect another 400 RSS sequences with negative labels when
we do not launch any attack. The labeled RSS sequences are fed to
train the classifiers with the “scipy” decision tree model [40].
BaselineMethod: At the same attacking position of each scenario,
we execute the attacks over the direct path, in which we put the
speaker towards the victim’s ear area without speaker-earbuds
alignment. In our evaluations, we take the attacking via the pure
direct path without applying the de-harmonic method as a baseline
method, called “Direct Attack”. The baseline direct attacking paths
are shown as the red solid lines in Figure 9(a)–(d).

6.2 Overall Performance
In S1, S2, and S4, where the victim is relatively static, we conduct
150 attacks to calculate each earbud’s corresponding attack success
rate through the optimal indirect path in EchoAttack and the direct
path in Direct Attack. In S3, with 150 attacks, we compare the attack
success rate of EchoAttack when the victim is walking and running
on the treadmill separately. Different earbuds are labeled: Pixel
buds as P; JBL as J; Galaxy as G; AirPods1 as A1; AirPods2 as A2;
and Bose as B.
Results: Figure 10 shows the performance comparison between
EchoAttack and Direct Attack in four experimental scenarios shown
in Figure 9. Overall, the mean attack success rate of EchoAttack
is 75.8% higher than the Direct Attack. In S1 and S2, EchoAttack
has 88.5% mean attack success rate, achieving almost 100% attack
success rate using Pixel, AirPods2, and Bose earbuds. The mean
attack success rate drops to 70.6% using Galaxy and JBL earbuds
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Figure 10: The performance comparison between EchoAttack and Direct Attack in the four scenarios from S1 to S4. (P: Pixel
buds, J: JBL, G: Galaxy, A1: AirPods1, A2: AirPods2, B: Bose)

Table 3: The attack success rate of EchoAttack for different
earbuds when the victim is walking and running in S3.

P J G A1 A B
Walking 100% 70% 75% 90% 100% 100%
Running 100% 66.5% 64.8% 67.5% 80% 100%

due to the non-linearity effect difference among different hardware.
In comparison, the maximum attack success rate of Direct Attack is
only 42.0% and drops to 6.5% and even 0 using AirPods1 and Bose
earbuds.

In S3, EchoAttack achieves 89.2%mean attack success rate, whereas
the attack success rate is 0% for Direct Attack. Moreover, as shown
in Table 3, when the victim runs on the treadmill, the mean attack
success rate decreases to 79.8% due to the severe head vibration dur-
ing running. However, for those scenarios where the victim’s head
is severely vibrating, EchoAttack can leverage the feedback module
to detect the attack failure and then quickly issue a new attack. In
S4, EchoAttack achieves 94.5%mean attack success rate, higher than
the Direct Attack’s 84.4% mean attack success rate. This verifies the
effectiveness of utilizing ground, a commonly available reflection
plane in a spacious environment, to attack the victim’s earbuds
with EchoAttack. Moreover, the attack success rate of Direct Attack
in S4 is much higher than in S1 – S3 because the direction of the
direct attack path is aligned with the orientation of the earbuds’
microphone in S4, and no such alignment exists in S1 – S3. Thus,
Direct Attack only works with a good direction alignment. Overall,
the consistent attack success rate verifies that the voice assistant
becomes more vulnerable under EchoAttack in practice.

6.3 Performance per System Module

Indirect Attack Path Effectiveness To evaluate the effective-
ness of the indirect attack path, we conduct experiments in a con-
trolled scenario where a victim stands 0.5 m away from a wall, and
the earbud is 1.65 m above the floor. The earbuds’ microphone port
faces the ground at a 45◦ angle. We deploy the attacking speaker
2 m away from the wall and 1 m above the floor. The speaker and
the victim are at a vertical line to the wall. In the experiments, the
victim faces eight different directions, ranging from 0◦ to 325◦, with
a uniform 45◦ difference. The directions of 0◦ and 180◦ indicate
that the victim faces the wall and the speaker. We apply the path-
searching algorithm in each face direction to search for the optimal
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Figure 11: The effectiveness
of indirect attack paths.
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Figure 12: The efficiency of
the de-harmonic method.

path by utilizing the wall and floor as reflectors. After determining
the optimal indirect attack path, we use PixelBuds to conduct 20
attacks over the indirect and direct paths to calculate the attack
success rate.
Results: Figure 11 shows the effectiveness of indirect attack paths.
Overall, EchoAttack achieves 81.5% mean attack success rate when
the victim faces the eight directions. Since the baseline method only
leverages the direct path to attack the victim, the attack success
rate is zero when the victim does not face the speaker.

Deharmonics Method We leverage the same experimental set-
tings above to evaluate the efficiency of our harmonic removal
method. In this experiment, the victim faces the wall. Then, we
evaluate all six pairs of earbuds and conduct 50 attacks for each
to calculate the attack success rate with or without the harmonic
removal method.
Results: Figure 12 shows that applying the harmonic removal
method improves the mean attack success rate by 6.1%. Due to
the imperfection of different hardware’s non-linearity effect, the
improvement varies from 2.8% to 10.5% across the six earbuds.

Bluetooth Feedback System We leverage the pre-trained classi-
fiers in Section 6.1 to evaluate the efficiency of the Bluetooth feed-
back system using four hands-free earbuds (Pixel, Galaxy, JBL, and
Airpods) in S1–S3. For each pair of earbuds in each scenario, we col-
lect 100 attack success RSS sequences and 100 RSS sequences with-
out any attacks as the testing dataset. Notice the training dataset
and testing dataset are collected on different dates, and co-existence
interference (e.g., Wi-Fi) is relatively weak in all three scenarios.
Results: Table 4 shows the mean detection accuracy and F1-Score
across the three scenarios. For all earbuds, EchoAttack achieves
95.19% mean detection accuracy, and the F1-Scores of non-activated
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Table 4: The average accuracy and F1-Score of attack success
feedback for four earbuds across 3 scenarios S1 – S3.

Earbuds Accuracy (%) F1-Score (%)
No Activated Activated

Google Pixel Buds 91.20 92.93 90.07
Galaxy Buds Live 95.22 95.38 95.07
JBL Reflect Flow 99.06 98.11 99.17
AirPods 2nd Gen 95.26 95.87 94.32

and activated predictions are above 90%, indicating the effectiveness
of our attack success feedback system.

6.4 System Practicability Study

Path searching Overhead The path searching overhead is de-
termined by the side length of 𝑎𝑖 within the target area 𝐴. In this
experiment, we set the side length from 0.1 m to 0.3 m, and then
defined the target areas in S1 – S3 as follows: In S1 (Figure 9(a)), the
speaker is placed on a desk, 0.7 m from the floor and 0.15 m from
the wall. The board is situated 2 m from the speaker. The center of
the target area is 1.2 m from the wall and 1 m from the board. The
left-to-right and front-to-back sizes are 0.8 m and 0.4 m. The victim
sits randomly within the target area facing the board. The earbuds
are 1.0 m above the floor. In S2 (Figure 9(b)), the speaker is placed
on a 0.45 m high bench, 1.3 m from the glass wall. The center of
the target area is 0.5 m from the glass wall. The left-to-right and
front-to-top sizes are 0.6 m and 0.2 m. The victim stands within
the target area, facing the glass wall within a 30◦ range left and
right. The earbuds are 1.65 m above the floor. In S3 (Figure 9(c)),
the speaker is placed on a 0.3 m high bench. The treadmill screen
is 2 m from the speaker, and its height is from 1.4 m to 1.8 m. The
victim walks/runs normally on the treadmill, 0.4 m from the screen.
The target area extends 0.2 m left and right of the screen’s center,
with a height of 1.6–1.9 m. The earbuds are 1.65 m above the floor.
In all three scenarios, the earbuds’ microphone faces downwards
at a 45◦ angle to the ground.
Results: Figure 13 shows the attack success rate and the number of
paths in the path table. After combining the adjacent paths within a
5◦ range, the number of searching paths decreases by 85% without
sacrificing attack performance. However, as the side length becomes
larger, the speakers cannot search for the optimal path, degrading
the attack performance. Therefore, we set the side length to 0.2 m
to minimize the searching overhead while maintaining the attack
efficiency. With a 0.2 m side length, path tables for S1, S2, and S3
have 8, 9, and 3 paths, respectively. The time required to generate
the path table for the three scenarios is 42.8 ms, 10.7 ms, and 0.8 ms.
The average number of attacks needed to perform a successful
attack are 3.5, 4.2, and 1.4 in S1, S2, and S3.

Impact of Attacker-Victim Distance We use the Pixel Buds
and the Galaxy Buds Live to evaluate the attack success rate of
EchoAttack and Direct Attack with various attacker-victim dis-
tances. The earbuds are placed 1 m away from the reflection point,
and the distance between the attacker speaker and the reflection
point varies from 1.2 m to 2 m. The directions from attacker and
target to the reflection point are perpendicular (the reflection angle
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Figure 13: The impact of side lengths in path searching.
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Figure 14: The impact of attacker-victim distance.

is 45◦), making the attacker-target distance vary from 1.56 m to
2.23 m.
Results: Figure 14 shows the attack success rates when the attacker-
victim distance varies. For Pixel Buds, when the attacker is close
to the victim (< 1.7 m), both EchoAttack and Direct Attack achieve
a 100% attack success rate. When the attacker-victim distance is
greater than 2 m, Direct Attack’s performance significantly drops to
0, whereas EchoAttack’s performance remains the same. For Galaxy
Buds, EchoAttack’s attack success rate is consistently higher than
Direct Attack by 30%. The results also indicate Galaxy Buds are
more sensitive to signal energy change than Pixel Buds, exhibiting
hardware diversity.

The Impact of Audible Noise We add two types of noises (white
noises and human voices) in an office to study the impact of ambient
noise on EchoAttack. We put a laptop next to the earbuds to play
white noise and human voices, with the 55–70 dB signal strength.
Results: Figure 15 shows that the mean attack success rate drops
from 100% to 43.33% when the white noise increases from 55 dB
to 70 dB. Compared with white noise, the human voice has more
impact on the performance of EchoAttack. The attack success rate
under human voice noises from 58 dB to 70 dB is 18.79% lower than
that of the white noise.

The Impact of Bluetooth Noise In practice, other Bluetooth
devices can be around the victim and attacker, introducing noises to
the Bluetooth feedback system. In this experiment, we put another
Bluetooth device 1–5 m away from the victim. Specifically, we use
the Pixel Buds as the victim and an iPhone as the noise source. The
iPhone keeps playing music through AirPods2.
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Figure 16: The impact of Blue-
tooth interference.

Results: The impact of Bluetooth noise levels on the classification
accuracy is shown in Figure 16. We can see that the classification
accuracy increases as the noise strength becomes weaker. At the
shortest distance of 1 m, the average signal strength of the Blue-
tooth noise reaches -96.09dB, but the model accuracy is still over
83.95%. When is distance is greater than 1 m, the average signal
strength of Bluetooth noises is low, which will not affect EchoAt-
tack’s performance.

The Impact of Attack Timing When a voice assistant is acti-
vated but does not hear a command in a short interval, it will emit
an audible notification sound, such as a beep or tone, to indicate
it is waiting for a command. Such notification sounds may draw
the victim’s attention and expose the attack. For example, Apple’s
Siri emits an “uh-huh” sound. If no further command is recorded
during a subsequent time window, it will automatically deactivate
itself. In this experiment, we illustrate the timing of EchoAttack
and different voice assistant systems to show that EchoAttack can
timely detect whether a victim’s voice assistant is successfully ac-
tivated and continuously issue an attack command to disable the
notification sound.

We take Siri as an example to illustrate how to measure the
timing of a voice assistant, including activation time, notification
sound time, and time-out time. We activate the voice assistant by
saying “Hey Siri” on an iPhone connected to AirPods 2. We use
another iPhone to simultaneously record the screen of the acti-
vated iPhone and the audio from us and the AirPods 2. After “Hey
Siri” is sent out, EchoAttack issues an attack command if the Blue-
tooth feedback system detects a successful activation. Then, we
use Clipchamp [41], an online video/audio analysis tool, to extract
the timing of EchoAttack, including the length of the RSS record-
ing period, data pulling delay, and inference delay of Bluetooth
feedback. We follow the same experimental procedure for other
voice assistants (Google, Bixby, and Alexa) and earbuds (Pixel Buds,
Galaxy Buds, and JBL Buds).
Results: Figure 17 shows the timing of “Hey Siri” and EchoAttack.
For Siri, we observe that when the phrase is detected (0.6 s), an
activation animation will be played on the phone screen. Then,
Siri listens to user commands for another 1.5 s before emitting a
notification sound. After 3.4 s timeout period, Siri deactivates itself.
For EchoAttack, the RSS recording, the Bluetooth signal sampling 2,
and detection take 0.6 s, 0.5 s, and 0.03 s, respectively. After detecting
the activation phrase, EchoAttack has 1.27 s to issue an attack

2We pull 9,600 data samples from the 16 slave USB dongles.

Hey Siri! uh-huh

Siri

EchoAttack

0s 2.1s 5.5s

0.3s

Activated

Recording Transfer and infer

-0.3s 0.83s

0.6s

Time Out

Figure 17: The timing of “Hey Siri” and EchoAttack.

Table 5: The timing of different voice assistants (VA) and ear-
buds

VA Siri Google Bixby Alexa
System iOS 15.6 Android 12 Android 12 Android 12

Smart Phone iPhone Xs Galaxy A11 Galaxy S10e Galaxy S10e
Earbuds AirPods 2 Pixel Buds Galaxy Buds JBL Buds

Activated (s) 0.6 1.5 1.0 0.95
Beap (s) 2.1 0.6 3.0 —

Timeout (s) 5.5 10.0 5.0 6.0

command tomute the notification soundwithout drawing the user’s
attention.

Table 5 shows the results for other voice assistants (e.g., Google,
Bixby, Alexa). For example, Bixby emits a beep to indicate its contin-
ued activation 3 s after detecting the activation phrase “Hi Bixby”.
This interval is long enough for EchoAttack (0.83 s) to issue an at-
tack command without alerting the victim. Alexa does not emit any
notification sound. After the activation phrase “Alexa” is spoken,
it remains active and listens for commands for 6 s. Google’s voice
assistant emits a notification sound before detecting the activation
phrase. In this case, EchoAttack cannot send the activation phrase
and an attack command separately without incurring the victim’s
attention. Instead, EchoAttack send them simultaneously, so even
if the victim notices the attack, it has been executed. However, it
delays the Bluetooth feedback processing, increasing the time of
the path searching in practice.

7 DISCUSSION
Smart Device Permission Control: Nowadays, the permission
control of the voice assistant is used to balance the user experience
and the potential security/privacy issues. For example, a smart-
phone’s voice assistant cannot make a regular phone call without
unlocking the smartphone. But EchoAttack can still compromise
such permission control from three folds [42]. First, the users are
allowed to configure the permission control settings. For example,
with a configuration, the voice assistant can directly call people in
the contacts without unlocking the smartphone. Thus, for those
users who lower the permission control level of the voice assistant
for easy use, EchoAttack can execute the attack successfully. Sec-
ond, we can intentionally select victims over peeking in some cases
(e.g., bus stop, study area). If we observe the victim’s smartphone
is unlocked and not in use (e.g., putting on a table), EchoAttack
can execute many attacks. Third, even if the smartphone is locked
and its permission control is enabled, EchoAttack can still force
the device to make emergency calls (e.g., 911), configure the smart-
phone to airplane mode to disable service, or turn on the flashlight
to drain the battery.
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8 COUNTERMEASURES
We propose several possible ways to defend EchoAttack in practice.

Non-linearity signal cancellation: Similar to the defense meth-
ods [2, 8, 43] for smartphones, we can leverage extra ultra-sound
speakers to cancel the attack acoustic signals. However, such ap-
proaches will bring extra overhead for users, making them less
practical in daily use.

Security-aware Speech Recognition: Some methods [44–47]
can train a personalized speech recognition model which can only
recognize legal users’ commands. This is a practical way without
any hardware cost or modification. However, it will increase the
computation complexity of the model, resulting in certain delays
which might degrade the user experience. Moreover, the replay
attack is hard to be completely mitigated with this approach.

Earable authentication: Because of the unique shape of human
ears, the earable authentication that utilizes different modalities
on earbuds to authenticate the voice command is another possible
countermeasure. Liu et al. [48] proposed to use IMU sensors to do
continuous authentication as the vibrations are different when a
user is speaking. And Gao et al. [49] used the mapping between the
in-air voice and the voice captured in the ear canal to authenticate.
These two works somehow address the threat of ultrasound attack
on earbuds, though they have limitations that need to be addressed.
The vibrations while speaking may be affected by head or body
motion, and the neural network in [49] is too heavy to run on a
smartphone.

9 RELATEDWORK
The design of EchoAttack combines the knowledge from several
different research areas, including earable computing, ultrasound
based privacy and security, and Bluetooth signal sniffing. We sum-
marize some related works from the three categories as follows:

Earable Computing. Earable computing [50] is an emerging
research area encompassing speech recognition, augmented re-
ality, motion tracking, and security/authentication. For example,
UNIQ [51] personalizes HRTF [52] using earbuds, enabling AR appli-
cations. Ear-AR [4] achieves acoustic AR in indoor environments,
while EarSense [53] senses teeth-related gestures. EarGate [54]
detects user gait patterns, and BioFace-3D [55] develops an ear-
piece biosensing system for 3D facial reconstruction. FaceSense [56]
senses face touch behavior, and EarEcho [57] uses in-ear micro-
phones for biometric authentication. And also some works [58, 59]
use smartphone and earbuds to perform hearing test as wearing ear-
buds for longtime becomes a reason of hearing loss. Also, earbuds
can work as a health information platform [60, 61] to monitor heart
rate and so on. While these works focus on AR, motion tracking, au-
thentication, health, EchoAttack addresses earbuds privacy/security
issues and develops a practical attack system.

UltrasoundbasedPrivacy and Security on SmartDevices. Ul-
trasound has been used to compromise smart devices by transmit-
ting private or insecure information in various ways [2, 8, 62]. For
example, DolphinAttack [8] and BackDoor [2] demonstrate the fea-
sibility of using ultrasound and microphone non-linearity to attack
voice assistants on smartphones. LipRead [63] achieves an extended

attack range on smart voice-controlled devices. Metamorph [64]
proposes a method utilizing ultrasound signals to deceive speech
recognition systems. AIC [43] introduces a method to counteract
the non-linearity effect at the microphone side to prevent poten-
tial attacks. Patronus [65] develops an ultrasound-based jamming
system to protect voice recording privacy. However, these works
do not consider attacking earbuds, which differ significantly from
smartphones and other smart voice-controlled devices. Moreover,
all these systems only use the direct path (i.e., the baselinemethod in
the evaluation) to attack the smart devices. In contrast, EchoAttack
establishes an efficient earbud-attacking system utilizing available
in-direct paths in practice.

Bluetooth Sniffing. BlueEar [66] uses two Bluetooth radios to
learn the frequency hopping of Bluetooth communication in the
air. BlueSeer [67] and BlueDoor [68] propose method to sniff the
BLE (Bluetooth Low Energy) communication. However, since the
Bluetooth communication is very short (i.e., less than 1 second)
during triggering a voice assistant and the earbuds do not use BLE,
these methods cannot be directly applied for Bluetooth sniffing in
our attack. Moreover, ZiSense [69] and SoNIC [70] propose to use
Zigbee radio to classify Zigbee signals from other coexistent Wi-
Fi and Bluetooth signals. ZiFi [71] uses Zigbee radio to detect the
existence ofWi-Fi access point. However, these methods do not well
address the frequency hopping issues in Bluetooth communication,
thus cannot be directly adopted. In contrast, EchoAttack develops
a system using 16 Zigbee radios to reliability detect short-period
Bluetooth signals with frequency hopping.

10 CONCLUSION
To conclude, we found that the hand-free voice assistant function
provided by off-the-shelf earbuds is vulnerable to ultrasound at-
tacks since the position of the earbuds is explicitly known to an
attacker. We propose EchoAttack, a practical inaudible earbuds
attacking system to activate the voice assistant on smartphones,
exposing victims’ privacy in danger at offices, bus stops, or gyms.
We mainly solve three challenges. First, we observe that the micro-
phone sensing range on earbuds is directional. Thus, we develop a
reflection model to establish the best direction of the ultrasound
speaker. Second, we develop a harmonic canceling method to im-
prove the quality of non-linearity sound recording with earbuds,
thus improving the possibility of a successful attack. Third, we uti-
lize Zigbee radios to design efficient feedback for whether an attack
is successful by monitoring the Bluetooth signals of the communica-
tion between earbuds and smartphones. We implement EchoAttack
with commercial ultrasound speakers and Zigbee dongles. We fur-
ther conduct extensive experiments to evaluate the efficiency of
EchoAttack in four real-world scenarios using six earbuds. The
results show EchoAttack achieves 88.1% mean attack success rate
across six earbuds in practical scenarios.
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